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Quantum parameter estimation promises a high-precision measurement in theory; however, how to design
the optimal scheme in a specific scenario, especially under a practical condition, is still a serious problem
that needs to be solved case by case due to the existence of multiple mathematical bounds and optimization
methods. Depending on the scenario considered, different bounds may be more or less suitable, both in terms
of computational complexity and the tightness of the bound itself. At the same time, the metrological schemes
provided by different optimization methods need to be tested against realization complexity, robustness, etc.
Hence, a comprehensive toolkit containing various bounds and optimization methods is essential for the scheme
design in quantum metrology. To fill this vacancy, here we present a Python-Julia-based open-source toolkit for
quantum parameter estimation, which includes many well-used mathematical bounds and optimization methods.
Utilizing this toolkit, all procedures in the scheme design, such as the optimizations of the probe state, control
and measurement, can be readily and efficiently performed.
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I. INTRODUCTION

Quantum metrology is an emerging cross-disciplinary field
between precision measurement and quantum technology,
and has now become one of the most promising fields in
quantum technology due to the general belief that it could
step into the industrial-grade applications in a short time
[1–5]. Meanwhile, its development not only benefits the ap-
plied technologies like the magnetometry, thermometry, and
gravimetry, but also the studies in fundamental physics such
as the detection of gravitational waves [6] and the search
of dark matters [7,8]. As the theoretical support of quantum
metrology, quantum parameter estimation started from 1960s
[9], and has become an indispensable component of quantum
metrology nowadays [10–18].

One of the key challenges in quantum parameter estima-
tion is to design optimal schemes with quantum apparatuses
and quantum resources, leading to enhanced precision when
compared with their classical counterparts. A typical scheme
in quantum parameter estimation usually contains four steps:
(1) preparation; (2) parametrization; (3) measurement; and
(4) classical estimation. The first step is the preparation of
the probe state. The parameters to be estimated are involved

*liujingphys@hust.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

in the second step, which is also known as sensing in the
field of quantum sensing. With the parameterized state given
in the second step, the third step is to perform the quantum
measurement, which results in a set of probability distribu-
tions. Estimating the unknown parameters from the obtained
probability distributions is finished in the last step. The design
of an optimal scheme usually requires the optimizations of
some or all of the steps above.

In quantum parameter estimation, there exist various math-
ematical bounds to depict the theoretical precision limit.
Depending on the type of the bound considered, it will be
more or less informative depending on the type of estimation
scenario considered, be it: single-shot versus many-repetition
scenario, single versus multiple-parameter scenario, etc.
Moreover, by choosing different objective functions when
optimizing quantum estimation schemes, one may arrive at
solutions with contrastingly different robustness properties,
complexity of practical implementation and so on. Hence,
the design of optimal schemes has to be performed case by
case most of the time. This is the reason why a general quan-
tum parameter estimation toolkit is needed. In the meantime,
thanks to the fast development of quantum metrology and its
promising future, many scientists working on specific phys-
ical systems, such as the nitrogen-vacancy centers, quantum
circuits, trapped ions, and atoms, are also eager to use the
cutting-edge technologies in quantum parameter estimation
for the design of metrological schemes on their platforms. The
existence of a comprehensive toolkit will definitely reduce
the technical difficulty for them to fulfill this mission and
greatly improve the efficiency of research. Therefore, devel-
oping such a toolkit is the major motivation of this paper.
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Currently, there exist many useful toolkits based on various
coding platforms in quantum information. A famous one is
the QuTiP developed by Johansson, Nation, and Nori [19,20]
in 2012, which can execute many basic calculations in quan-
tum information. In the field of quantum control, Machnes
et al. [21] developed DYNAMO and Hogben et al. developed
Spinach [22] based on Matlab. Goerz et al. developed Krotov
[23], which owns three versions based on Fortran, Python,
and Julia, respectively. Günther et al. developed Quandary
[24] based on C++. Moreover, there exist other packages
like Kwant [25] for quantum transport and ProjectQ [26]
for quantum computing. In quantum metrology, Chabuda and
Demkowicz-Dobrzański developed TNQMetro [27], a tensor-
network based Python package to perform efficient quantum
metrology computations.

Hereby we present a numerical toolkit, QuanEstimation,
based on both Python and Julia for the quantum parameter
estimation and provide some examples to demonstrate its us-
age and performance. QuanEstimation is designed to fill the
lack of a general toolkit in quantum parameter estimation,
not a general one in quantum information. Hence, it only
focuses on the missions in quantum parameter estimation, and
the main features are significantly different from the existing
toolkits in quantum information. Specifically, it contains sev-
eral widely-used metrological tools, such as the asymptotic
Fisher information based quantities as well as their Bayesian
counterparts (including direct Bayesian cost minimization,
Bayesian versions of the classical and quantum Cramér-Rao
bounds as well as the quantum Ziv-Zakai bound). For the
sake of scheme design, QuanEstimation can execute the op-
timizations of the probe state, control, and measurement, as
well as the simultaneous optimizations among them with both
gradient-based and gradient-free methods. Due to the fact that
most of the time adaptive measurement schemes are the best
practical way to realize the asymptotic advantage indicated
by the quantum Fisher information, QuanEstimation can also
execute online adaptive measurement schemes, such as the
adaptive phase estimation, and provide the real-time values
of the tunable parameters that can be directly used in an
experiment.

II. OVERVIEW

QuanEstimation is a scientific computing package focusing
on the calculations and optimizations in quantum parameter
estimation. It is based on both Python and Julia. The in-
terface is written in Python due to the fact that nowadays
Python is one of the most popular platforms for scientific
computing. However, QuanEstimation contains many opti-
mization processes, which need to execute massive numbers
of elementary processes such as the loops. These elementary
processes could be very time-consuming in Python, and thus
strongly affect the efficiency of the optimizations. This is why
Julia is involved in this package. Julia has many wonderful
features, such as optional typing and multiple dispatch, and
these features let the loop and other calculation processes cost
way less time than those in Python. Hence, the optimizations
in QuanEstimation are all performed in Julia. Nevertheless,
currently the community of Julia is not comparable to that of
Python, and the hybrid structure of this package would allow

the people who are not familiar with Julia use the package
without any obstacle. In the meantime, QuanEstimation has a
full Julia version for the users experienced in Julia.

The package structure of QuanEstimation is illustrated in
Fig. 1. The blue boxes and the light-blue boxes represent the
folders and the files. The orange boxes and the gray boxes
represent the classes and the functions/methods. The boxes
circled by the dotted lines represents the wrapped Julia meth-
ods, which are solved in Julia, namely, this part of calculation
are sent to Julia to execute.

The functions for the calculation of the parametrization
process and dynamics are in the folder named “Parameteri-
zation”. In this folder, the file “GeneralDynamics.py” contains
the functions to solve the Lindblad-type master equation. Cur-
rently, the master equation can be solved directly, i.e., solving
the corresponding ordinary differential equation, or via the
matrix exponential. To improve the efficiency, the calculation
of the dynamics via the matrix exponential are executed in
Julia and when the calculation is finished, the data is sent
back to Python for further use. The file “NonDynamics.py”
contains the nondynamical methods for the parametrization,
which currently includes the description via Kraus operators.
Details and the usage of these functions will be thoroughly
introduced in Sec. III.

The functions for the calculation of the metrological
tools and bounds are distributed in two folders named
“AsymptoticBound” and “BayesianBound”. In the folder
“AsymptoticBound”, the file “CramerRao.py” contains the
functions to calculate the quantities related to the quantum
Cramér-Rao bounds, and the file “AnalogCramerRao.py” con-
tains those to calculate the Holevo-type quantum Cramér-Rao
bound and Nagaoka-Hayashi bound. In the folder “Bayesian-
Bound”, the file “BayesCramerRao.py” contains the functions
to calculate several versions of the Bayesian classical and
quantum Cramér-Rao bounds and “ZivZakai.py” contains the
function to calculate the quantum Ziv-Zakai bound. The file
“BayesEstimation.py” contains the functions to execute the
Bayesian estimation and the maximum likelihood estimation.
The aforementioned metrological tools and the corresponding
rules to call them will be given in Sec. IV.

The functions for the calculation of metrological resources
are placed in the folder named “Resource”. In this folder, the
file “Resource.py” currently contains two types of resources,
the spin squeezing and the target time to reach a given value of
an objective function, which will be thoroughly introduced in
Sec. V. The resources that can be readily calculated via QuTiP
[19,20] are not included at this moment.

The scripts for the control optimization, state optimization,
measurement optimization, and comprehensive optimization
are in the folders named “ControlOpt”, “StateOpt”, “Mea-
surementOpt”, and “ComprehensiveOpt”, respectively. The
structures of these folders are basically the same, and here
we only take the folder of “ControlOpt” as an demonstra-
tion to explain the basic structure. In this folder, the file
“ControlStruct.py” contains a function named ControlOpt()
and a class named ControlSystem(). The function Con-
trolOpt() is used to receive the initialized parameters given
by the user, and then delivers them to one of the classes in
the files “GRAPE_Copt.py”, “PSO_Copt.py”, “DE_Copt.py”,
and “DDPG_Copt.py” according to the user’s choice of the
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FIG. 1. Schematic of the package structure of QuanEstimation. The blue boxes and the light-blue boxes represent the folders and the files.
The orange boxes and the gray boxes represent the classes and the functions/methods. The boxes circled by the dotted lines represents the
wrapped Julia methods, which are solved in Julia scripts.

algorithm. These classes inherit the attributes in ControlSys-
tem(). Then based on the choice of the objective function, the
related parts in ControlSystem() is called in these classes to
further run the scripts in Julia. ControlSystem() contains all
the common parts that different algorithms would use and the
interface with the scripts in Julia. This design is to avoid the
repetition code in the algorithm files and let the extension
neat and simple when more algorithms need to be included
in the future. The usage of QuanEstimation for control opti-
mization, state optimization, measurement optimization, and
comprehensive optimization, as well as the corresponding
illustrations will be thoroughly discussed in Secs. VI–IX,
respectively.

The scripts for the adaptive measurement are in the folder
named “AdaptiveScheme”. In this folder, the file “Adapt.py”
contains the class to execute the adaptive measurement
scheme, and “Adapt_MZI.py” contains the class to generate
online and off-line adaptive schemes in the Mach-Zehnder
interferometer. The details of the adaptive scheme and how
to perform it with QuanEstimation will be given in Sec. X.

The folder “Common” contains some common functions
that are regularly called in QuanEstimation. Currently it
contains three functions. SIC() is used to generate a set
of rank-one symmetric informationally complete positive
operator-valued measure. suN_generator() is used to generate
a set of su(N) generators. BayesInput() is used to generate a
legitimate form of Hamiltonian (or a set of Kraus operators)

and its derivative, which can be used as the input in some
functions in “BayesEstimation.py” and “Adapt.py”.

All the Julia scripts are wrapped up as an independent
Julia package named “QuanEstimation.jl”, which has already
been added in the official Julia registry and can be directly
called in Julia via using QuanEstimation. One design prin-
ciple of QuanEstimation for the optimizations is that once
the calculation goes into the parts in Julia, it will stay in
Julia until all the calculations are finished and data gener-
ated. Hence, “QuanEstimation.jl” also contains the scripts to
calculate the metrological tools and resources for the sake of
internal calling in Julia. To keep a high extendability, the op-
timizations are divided into four elements in Julia, including
the scenario of optimization, the algorithm, the parametriza-
tion process and the objective function, which are distributed
in the files “OptScenario.jl”, “Algorithm.jl”, “Parameteriza-
tion.jl”, and “ObjectiveFunc.jl” in the folders “OptScenario”,
“Algorithm”, “Parameterization”, and “ObjectiveFunc”, re-
spectively. Once the information and parameter settings of all
elements are input by the user, they are sent to the file “run.jl”,
which is further used to execute the program.

Similar to other packages, the usage of QuanEstima-
tion requires the existence of some other packages in the
environment. In python it requires the preinstallation of
numpy, scipy, sympy, cvxpy, and more-itertools. In Julia it
requires the preinstallation of LinearAlgebra, Zygote, Convex,
SCS, ReinforcementLearning, SparseArrays, DelimitedFiles,
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StatsBase, BoundaryValueDiffEq, Random, Trapz, Interpola-
tions, Printf, IntervalSets, StableRNGs, Flux, Distributions,
DifferentialEquations, and QuadGK. The calling of the pack-
age in Python can be done with the following line of code:

All the scripts demonstrated in the following are based on this
calling form.

III. PARAMETRIZATION PROCESS

The parametrization process is a key step in the quantum
parameter estimation, and in physical terms this process corre-
sponds to a parameter dependent quantum dynamics. Hence,
the ability to solve the dynamics is an indispensable element
of numerical calculations in quantum parameter estimation. In
QuanEstimation, we mainly focus on the dynamics governed
by the quantum master equation

∂tρ = Lρ

= −i[H, ρ] +
∑

i

γi

(
�iρ�

†
i − 1

2
{ρ, �

†
i �i}

)
, (1)

where ρ is the evolved density matrix, H is the Hamiltonian
of the system, and �i and γi are the ith decay operator and
decay rate, respectively. Here γi could either be fixed or time
dependent. The total Hamiltonian H includes two terms, the
free Hamiltonian H0(x), which is a function of the parameters
x, and control Hamiltonian Hc. In the quantum parameter es-
timation, most calculations require the dynamical information
of ρ and its derivatives with respect to x, which is denoted
by ∂xρ := (∂0ρ, ∂1ρ, . . . ) with ∂a short for ∂xa . Hence, in the
package ρ and ∂xρ can be solved simultaneously via the code:

Here the input tspan is an array representing the time length
for the evolution and rho0 is a matrix representing the initial
(probe) state. H0 is a matrix or a list of matrices representing
the free Hamiltonian. It is a matrix when the free Hamiltonian
is time independent and a list (the length equals to that of
tspan) when it is time dependent. dH is a list containing the
derivatives of H0(x) on x, i.e., [∂aH0, ∂bH0, . . . ]. decay is a list
including both decay operators and decay rates, and its input
rule is decay=[[Gamma1,gamma1],[Gamma2,gamma2],...],
where Gamma1 (Gamma2) and gamma1 (gamma2) represent
�1 (�2) and γ1 (γ2), respectively. gamma1 (gamma2) could be
either a float number (representing a fixed decay rate) or an
array (representing a time-dependent decay rate), and when it
is an array, its length should be the same with tspan. Currently
all the length of the decay rates should be the same, i.e., all
be float numbers or arrays with the same length. The default
value is empty, which means the dynamics is unitary. Hc is
a list of matrices representing the control Hamiltonians and
when it is empty, the dynamics is only governed by the free
Hamiltonian. ctrl (default value is empty) is a list of arrays
containing the control amplitudes with respect the control
Hamiltonians in Hc. The output rho is a list representing

density matrices in the dynamics. drho is also a list and its
ith entry is a list containing all derivatives ∂xρ at ith time
interval. Moreover, dynamics.expm() in this demonstrating
code means the dynamics is solved by the matrix exponential,
i.e., the density matrix at jth time interval is calculated via
ρ j = e�t jLρ j−1 with �t j a small time interval and ρ j−1 the
density matrix at the previous time interval. ∂xρ j is solved by
the iterative equation

∂xρ j = �t j (∂xL)ρ j + e�t jL(∂xρ j−1)

= −i�t j[∂xH0, ρ j] + e�t jL(∂xρ j−1). (2)

Here the decay operators and decay rates are assumed to be
independent of x. In this method �t j is automatically obtained
by calculating the difference between the jth and ( j − 1)th
entries in tspan. The numerical accuracy of the equation above
is limited by the set of {�t j}, indicating that a smaller {�t j}
would always benefit the improvement of the accuracy in
general. However, a smaller {�t j} also means a larger number
of calculation steps for a fixed evolution time, resulting in
a greater time consumption. Hence, in practice a reasonable
values of {�t j} should be chosen to balance the accuracy and
time consumption.

Alternatively, the dynamics can also be solved by directly
solving the ordinary differential equation (ODE) in Eq. (1),
which can be realized by replacing dynamics.expm() with
dynamics.ode() in the demonstrating code. In this method, ∂xρ

is solved by the equation

∂t (∂xρ) = −i[∂xH, ρ] + L(∂xρ). (3)

The calculation of metrological bounds, which will be
discussed in the next section, does not rely on the calling of
above intrinsic dynamics in the package as they only require
the input of ρ and ∂xρ (and other essential parameters), not
any dynamical information. Hence, the dynamics can also be
solved by other packages like QuTiP [19,20].

In certain cases, the parametrization process can be de-
scribed by some nondynamical methods, such as the Kraus
operators. In this case, the parameterized density matrix can
be expressed by

ρ(x) =
∑

i

Ki(x)ρ0K†
i (x), (4)

where Ki(x) is a Kraus operator satisfying
∑

i K†
i Ki = 1 with

1 the identity operator, ρ0 is the probe state, which is indepen-
dent of the unknown parameters. In QuanEstimation, ρ and
∂xρ obtained from Kraus operators can be solved via the code:

Here rho0 is a matrix representing the probe state, K is a list
of matrices with each entry a Kraus operator, and dK is a list
with ith entry also a list representing the derivatives ∂xKi.

The aforementioned functions only calculate ρ and ∂xρ at
a fixed point of x. However, in the Bayesian scenarios, the val-
ues of ρ and ∂xρ with respect to a regime of x may be in need.
In this case, if the users can provide the specific functions of
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H and ∂xH , or Kraus operators {Ki} and derivatives {∂xKi}, the
variables H, dH (or K, dK) can be generated by the function

“ ”

Here x is a list of arrays representing the regime of x. H0 is a
list of matrices representing the free Hamiltonian with respect
to the values in x, and it is multidimensional in the case that
x has more than one entry. dH is a (multidimensional) list
with each entry also a list representing ∂xH with respect to
the values in x. func and dfunc are the handles of the functions
func() and dfunc(), which are defined by the users representing
H (x) and ∂xH (x). Notice that the output of dfunc() should also
be a list representing [∂0H, ∂1H, . . . ]. The output of BayesIn-
put() can be switched between H, dH and K, dK by setting
channel = “dynamics” or channel = “Kraus”. After calling
BayesInput(), ρ and ∂xρ can be further obtained via the calling
of Lindblad() and Kraus().

IV. QUANTUM METROLOGICAL TOOLS

In this section, we will briefly introduce the metrolog-
ical tools that have been involved in QuanEstimation and
demonstrate how to calculate them with our package. Both
asymptotic and Bayesian tools are included, such as the
quantum Cramér-Rao bounds, Holevo Cramér-Rao bound,
Nagaoka-Hayashi bound, Bayesian estimation, and Bayesian
type of Cramér-Rao bounds like Van Trees bound and Tsang-
Wiseman-Caves bound.

A. Quantum Cramér-Rao bounds

Quantum Cramér-Rao bounds [28,29] are the most renown
metrological tools in quantum parameter estimation. Let ρ =
ρ(x) be a parameterized density matrix and {�y} a set of pos-
itive operator-valued measure (POVM), then the covariance
matrix cov(x̂, {�y}) := ∑

y Tr(ρ�y)(x̂ − x)(x̂ − x)T for the
unknown parameters x = (x0, x1, . . . )T and the corresponding
unbiased estimators x̂ = (x̂0, x̂1, . . . )T satisfies the following
inequalities [28,29]

cov(x̂, {�y}) � 1

n
I−1({�y}) � 1

n
F−1, (5)

where n is the repetition of the experiment, I is the classi-
cal Fisher information matrix (CFIM) and F is the quantum
Fisher information matrix (QFIM). Note that the estimators
x̂ are in fact functions of the measurement outcomes y, and
formally should always be written as x̂(y). Still, we drop
this explicit dependence on y for conciseness of formulas. A
thorough derivation of this bound can be found in a recent
review [13].

For a set of discrete probability distribution {p(y|x) =
Tr(ρ�y)}, the CFIM is defined by

Iab =
∑

y

1

p(y|x)
[∂a p(y|x)][∂b p(y|x)]. (6)

Here Iab is short for Ixa,xb , the abth entry of the CFIM. For
a continuous probability density, the equation above becomes

Iab = ∫
1

p(y|x) [∂a p(y|x)][∂b p(y|x)]dy. The diagonal entry Iaa

is the classical Fisher information (CFI) for xa.
The QFIM does not depend on the actual measurement

performed, and one can encounter a few equivalent definitions
of this quantity. The one the most often used reads

Fab = 1
2 Tr(ρ{La, Lb}) (7)

with Fab being the abth entry of F and La(b) the symmetric
logarithmic derivative (SLD) operator for xa(b). {·, ·} repre-
sents the anticommutator. The SLD operator is Hermitian and
determined by the equation

∂aρ = 1
2 (ρLa + Laρ). (8)

The mathematical properties of the SLD operator and QFIM
can be found in a recent review [13]. The diagonal entry of Faa

is the quantum Fisher information (QFI) for xa. Utilizing the
spectral decomposition ρ = ∑

i λi|λi〉〈λi|, the SLD operator
can be calculated via the equation

〈λi|La|λ j〉 = 2〈λi|∂aρ|λ j〉
λi + λ j

, (9)

for λi or λ j not equal to zero. For λi = λ j = 0, the correspond-
ing matrix entry of La can be set to zero.

In QuanEstimation, the SLD operator can be calculated via
the function:

“ ”

Here the input rho is a matrix representing the parameterized
density matrix, and drho is a list of matrices representing the
derivatives of the density matrix on x, i.e., [∂0ρ, ∂1ρ, . . . ].
When drho only contains one entry ([∂0ρ]), the output of
SLD() is a matrix (L0), and it is a list ([L0, L1, . . . ]) otherwise.
The basis of the output SLD can be adjusted via the variable
rep. The default choice rep = “original” means the basis
is the same with that of the input density matrix. The other
choice is rep = “eigen”, which means the SLD is written in
the eigenspace of the density matrix. Due to the fact that the
entries of SLD in the kernel are arbitrary, in the package they
are just set to be zeros for simplicity. The default machine
epsilon is eps = 1e–8, which can be modified as required. Here
the machine epsilon means that if a eigenvalue of the density
matrix is less than the given number (10−8 by default), it will
be treated as zero in the calculation of SLD.

Apart from the SLD operator, the QFIM can also be defined
via other types of logarithmic derivatives. Some well-used
ones are the right and left logarithmic derivatives (RLD, LLD)
[29,30]. The RLD and LLD are determined by ∂aρ = ρRa

and ∂aρ = R†
aρ, respectively. Utilizing the spectral decompo-

sition, the entries of RLD and LLD can be calculated as

〈λi|Ra|λ j〉 = 1

λi
〈λi|∂aρ|λ j〉, λi �= 0, (10)

〈λi|R†
a|λ j〉 = 1

λ j
〈λi|∂aρ|λ j〉, λ j �= 0. (11)

The corresponding QFIM is Fab = Tr(ρRaR†
b). In QuanEsti-

mation, the LLD and RLD can be calculated via the functions
RLD() and LLD(). The inputs are the same with SLD(). Notice
that the RLD and LLD only exist when the support of ρ
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contains the the support of ∂aρ. Hence, if this condition is
not satisfied, the calculation will be terminated and a line of
reminder will arise to remind that RLD() and LLD() do not
exist in this case.

In QuanEstimation, the QFIM and QFI can be calculated
via the function:

“ ”

Here LDtype = “ ” is the type of logarithmic derivatives,
including “SLD”, “RLD”, and “LLD”. Notice that the values
of QFIM based on RLD and LLD are actually the same when
the RLD and LLD exist. If exportLD = True, apart from the
QFIM, the corresponding values of logarithmic derivatives in
the original basis will also be exported.

In the case that the parametrization is described via the
Kraus operators, the QFIM can be calculated via the function:

“ ”

The input rho0 is a matrix representing the density matrix
of the initial state. K is a list of matrices with each entry a
Kraus operator, and dK is a list with ith entry being also a list
representing the derivatives ∂xKi.

The CFIM and CFI for a fully classical scenario can be
calculated by the function

The input p is an array representing the probability distribu-
tion and dp is a list with the ith entry being itself also a list
containing the derivatives of pi on x, i.e., [∂0 pi, ∂1 pi, . . . ].
In the realistic experiments, the derivatives of the condi-
tional probability are difficult to obtain, and therefore the
CFI cannot be measured directly. However, it is possible
that a known small drift δx can be experimentally invoked
into the system and let the true value of x moves slightly.
In such cases, the CFI can be calculated once the dis-
tributions p(y|x) and p(y|x + δx) are acquired, which are
usually obtained via the distribution fitting. In the case of
single-parameter estimation, the CFI can be expressed by
I = 8[1 − ∑

y

√
p(y|x)p(y|x + δx)]/δ2x due to the relation

between the CFI and the classical fidelity
∑

y

√
p(y|x)q(y|x).

In QuanEstimation, if the users have two sets of data (results
of y) with respect to the value x and x + δx in experi-
ments, then the CFI can be calculated via the following
function:

“ ”

Here y1 and y2 are two arrays containing the data of
y in experiments with respect to the values x and x +
δx, and dx represents the value of δx. Currently, four
types of distributions are available for distribution fit-
ting, including the normal (Gaussian) distribution (ftype =
“norm”), gamma distribution (ftype = “gamma”), rayleigh
distribution (ftype = “rayleigh”), and poisson distribution
(ftype = “poisson”).

In a quantum scenario, the CFIM can be calculated by

The variable M is a list containing a set of POVM. The
default measurement is a set of rank-one symmetric infor-
mationally complete POVM (SIC-POVM) [31–33]. A set
of rank-one SIC-POVM { 1

d |φ j〉〈φ j |}d2

j=1 satisfies |〈φ j |φk〉|2 =
(dδ jk + 1)/(d + 1) for any j and k with |φ j〉 being a nor-
malized quantum state and d the dimension of the Hilbert
space. One way to construct a set of SIC-POVM is utilizing
the Weyl-Heisenberg operators [33,34], which is defined by
Dab = (−eiπ/d )abAaBb. The operators A and B satisfy A|k〉 =
|k + 1〉, B|k〉 = ei2πk/d |k〉 with {|k〉}d−1

k=0 an orthonormal basis
in the Hilbert space. There exists a normalized fiducial vector
|ψ〉 in the Hilbert space such that { 1

d Dab|ψ〉〈ψ |D†
ab}d

a,b=1 is
a set of SIC-POVM. In the package, |ψ〉 is taken as the
one numerically found by Fuchs et al. in Ref. [32]. If the
users want to see the specific formula of the SIC-POVM,
the function SIC(n) can be called. The input n is the dimension
of the density matrix. Currently, the function SIC(n) only valid
when n � 151.

In both functions QFIM() and CFIM(), the outputs are real
numbers (Faa and Iaa) in the single-parameter case, namely,
when drho only contains one entry, and they are real sym-
metric or Hermitian matrices in the multi-parameter scenarios.
The basis of QFIM and CFIM are determined by the order of
entries in drho. For example, when drho is [∂0ρ, ∂1ρ, . . . ], the
basis of the QFIM and CFIM is {x0, x1, . . . }.

For some specific scenarios, the calculation method in
QFIM() may be not efficient enough. Therefore, we also pro-
vide the calculation of QFIM in some specific scenarios. The
first one is the calculation in the Bloch representation. In this
case, the function for the calculation of QFIM is of the form

The input r is an array representing a Bloch vector and dr is a
list of arrays representing the derivatives of the Bloch vector
on x. Gaussian states are very commonly used in quantum
metrology, and the corresponding QFIM can be calculated by
the function

The input R is an array representing the first-order moment,
i.e., the expected value 〈R〉 := Tr(ρR) of the vector R =
(q1, p1, q2, p2, . . . )T, where qi = (ai + a†

i )/
√

2 and pi =
(ai − a†

i )/(i
√

2) are the quadrature operators with ai (a†
i ) the

annihilation (creation) operator of ith bosonic mode. dR is
a list with ith entry also a list containing the derivatives
∂x〈[R]i〉. Here [·]i represents the ith entry of the vector. D
is a matrix representing the second-order moment, Di j =
〈[R]i[R] j + [R] j[R]i〉/2, and dD is a list of matrices repre-
senting the derivatives ∂xD. Notice that QFIM_Bloch() and
QFIM_Gauss() can only compute the SLD-based QFIM.

Example. Now we present an example to show the us-
age of these functions. Consider a single qubit Hamiltonian
H = ωσ3/2 with σ3 a Pauli matrix and ω the frequency.
Take ω as the parameter to be estimated and assume its true
value (denoted by ωtr) is 1. Planck unit (h̄ = 1) is applied
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FIG. 2. (a) The demonstrating code for the calculation of QFI
and CFI with QuanEstimation. (b) The evolution of Fωω/t (solid-
blue line) and Iωω/t (dashed-red line). The initial state is |+〉. The
true value of ω (ωtr) is set to be 1, and the decay rates are set to be
γ+/ωtr = 0 and γ−/ωtr = 0.1. Planck units are applied here.

in the Hamiltonian. The dynamics is governed by the master
equation

∂tρ = −i[H, ρ] + γ+
(
σ+ρσ− − 1

2 {σ−σ+, ρ})
+ γ−

(
σ−ρσ+ − 1

2 {σ+σ−, ρ}), (12)

where σ± = (σ1 ± σ2)/2 with σ1, σ2 also Pauli matrices. γ+
and γ− are the decay rates. The measurement is taken as
{|+〉〈+|, |−〉〈−|} with

|±〉 := 1√
2

(|0〉 ± |1〉). (13)

Here |0〉 (|1〉) is the eigenstate of σ3 with respect to the eigen-
value 1 (−1). The specific code for the calculation of QFI/CFI
are given in Fig. 2(a), and the corresponding evolution of
Fωω/t (solid-blue line) and Iωω/t (dashed-red line) are shown
in Fig. 2(b). The operators such as the density matrix and
measurement can either be generated via QuTiP as in the
demonstrating code or direct input.

B. Holevo Cramér-Rao bound

Holevo Cramér-Rao bound (HCRB) is another useful
asymptotic bound in quantum parameter estimation and
tighter than the quantum Cramér-Rao bound in general. The
HCRB can be expressed as [14,35–37]

Tr(W cov(x̂, {�y})) � min
X,V

Tr(WV ) (14)

with W the weight matrix and V a matrix satisfying V �
Z (X). Here Z (X) is a Hermitian matrix and its abth entry is
defined by [Z (X)]ab := Tr(ρXaXb), where X = [X0, X1, · · · ]
is a vector of operators and its ath entry is defined by Xa :=∑

y(x̂a − xa)�y with x̂a the ath entry of x̂. To let the local esti-
mator x̂ unbiased, X needs to satisfy Tr(Xa∂bρ) = δab, ∀a, b.
Here δab is the Kronecker delta function. An equivalent for-
mulation of HCRB is [14,35–37]

min
X,V

Tr(WV )=min
X

Tr(W Re(Z ))+‖
√

W Im(Z )
√

W ‖, (15)

where Re(Z ) and Im(Z ) represent the real and imaginary
parts of Z , and ‖ · ‖ is the trace norm, i.e., ‖A‖ := Tr

√
A†A

for a matrix A. Numerically, in a specific matrix basis {λi},
which satisfies Tr(λiλ j ) = δi j , the HCRB can be solved via
the semidefinite programming as it can be reformulated into a
linear semidefinite problem [38],

min
X,V

Tr(WV ),

subject to

⎧⎨
⎩

(
V �TR†

R� 1

)
� 0,∑

i[�]aiTr(λi∂bρ) = δab.

(16)

Here the i jth entry of � is obtained by decomposing X in
the basis {λi}, Xi = ∑

j[�]i jλ j , and R satisfies Z = �TR†R�.
The semidefinite programming can be solved by the pack-
age CVXPY [39,40] in Python and Convex [41] in Julia.
In QuanEstimation, the HCRB can be calculated via the
function:

The input W is the weight matrix and rho, drho have been in-
troduced previously. Since Zaa is equivalent to the variance of
the unbiased observable O := ∑

y x̂a�y [unbiased condition
is Tr(ρO) = x], i.e., Zaa = Tr(ρO2) − [Tr(ρO)]2, in the case
of single-parameter estimation the optimal V is nothing but
Zaa itself. Furthermore, it can be proved that Zaa � 1/Faa and
the equality is attainable asymptotically. Hence, one can see
that minXa Zaa = 1/Faa, which means the HCRB is equivalent
to the quantum Cramér-Rao bound in the single-parameter
estimation. Due to better numerical efficiency of QFI com-
putation, whenever drho has only one entry, the calling of
HCRB() will automatically jump to QFIM() in the package.
Similarly, if W is a rank-one matrix, the HCRB also reduces
to Tr(WF−1) and thus in this case the calculation of HCRB
will also be replaced by the calculation of QFIM.

Example. Now let us take a two-parameter estimation as
an example to demonstrate the calculation of HCRB with
QuanEstimation. Consider a two-qubit system with the XX
coupling. The Hamiltonian of this system is

H = ω1σ
(1)
3 + ω2σ

(2)
3 + gσ (1)

1 σ
(2)
1 , (17)
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FIG. 3. Time evolution of Tr(WF−1) (solid-red line), Tr(WI−1)
(dashed-black line), HCRB (dash-dotted-blue line), and NHB
(dotted-green line) in the case of two-qubit system with the XX
coupling. The probe state is (|00〉 + |11〉)/

√
2. W = 1 and ω1 = 1.

The true values of ω2 and g are 1 and 0.1, respectively. The de-
cay rates γ1 = γ2 = 0.05ω1. The POVM for Tr(WI−1) is {�1, �2,
1 − �1 − �2} with �1 = 0.85|00〉〈00| and �2 = 0.4|++〉〈++|.
Planck units are applied here.

where ω1, ω2 are the frequencies of the first and second
qubit, σ

(1)
i = σi ⊗ 1, and σ

(2)
i = 1 ⊗ σi for i = 1, 2, 3. 1 is

the identity matrix. Planck units are applied here (h̄ = 1).
The parameters ω2 and g are the ones to be estimated. The
dynamics is governed by the master equation

∂tρ = −i[H, ρ] +
∑
i=1,2

γi
(
σ

(i)
3 ρσ

(i)
3 − ρ

)
(18)

with γi the decay rate for ith qubit. The time evolutions of
quantum Cramér-Rao bound [Tr(WF−1)], classical Cramér-
Rao bound [Tr(WI−1)], and HCRB are shown in Fig. 3. The
POVM for Tr(WI−1) is {�1, �2, 1 − �1 − �2} with �1 =
0.85|00〉〈00| and �2 = 0.4|+ +〉〈+ +|. The probe state is
(|00〉 + |11〉)/

√
2 and the weight matrix W = 1. As shown

in this plot, HCRB (dash-dotted-blue line) is tighter than
Tr(WF−1) (solid-red line), which is in agreement with the
fact that the HCRB is in general tighter than the quantum
Cramér-Rao bound, unless the quantum Cramér-Rao bound
is attainable, in which case the two bounds coincide [14].

C. Nagaoka-Hayashi bound

Apart from the HCRB, the Nagaoka-Hayashi bound
(NHB) [37,42,43] is another available bound for quantum
multiparameter estimation, and is tighter than the HCRB in
general. The expression of the NHB is

Tr(W cov(x̂, {�y})) � min
X,Q

Tr((W ⊗ ρ)Q). (19)

Here Q is a symmetric block matrix with each block a
Hermitian matrix, and it satisfies Q � XTX with X defined
in Sec. IV B, namely, X = [X0, X1, · · · ] and Xa = ∑

y(x̂a −
xa)�y. Similar to the HCRB, the calculation of NHB can
also be reformulated into a linear semidefinite problem [43]

as follows:

min
X,Q

Tr((W ⊗ ρ)Q),

subject to

⎧⎪⎪⎨
⎪⎪⎩

(
Q XT

X 1

)
� 0,

Tr(ρXa) = 0, ∀a,

Tr(Xa∂bρ) = δab, ∀a, b.

(20)

In QuanEstimation, the NHB can be calculated via the
function:

The performance of the NHB is also demonstrated in Fig. 3
with the Hamiltonian in Eq. (17) and dynamics in Eq. (18).
In this case the NHB (dotted-green line) is indeed slightly
tighter than the HCRB, and thus also tighter than the quantum
Cramér-Rao bound [Tr(WF−1)]. However, there still exist a
gap between the classical Cramér-Rao bound [Tr(WI−1)] and
the NHB, indicating that the chosen measurement may not be
an optimal one.

D. Bayesian estimation

Bayesian estimation is another well-used method in param-
eter estimation, in which the prior distribution is updated via
the posterior distribution obtained by the Bayes’ rule

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx

, (21)

where p(x) is the current prior distribution, y is the result
obtained in practice, and

∫
dx := ∫

dx0
∫

dx1 · · · . The prior
distribution is then updated with p(x|y), and the estimated
value of x is obtained via a reasonable estimator, such as the
expected value x̂ = ∫

xp(x|y)dx or the maximum a posteriori
estimation (MAP), x̂ = argmaxx p(x|y).

In QuanEstimation, the Bayesian estimation can be per-
formed via the function:

“ ”

The input x is a list of arrays representing the regimes of x,
which is the same with the function BayesInput() discussed
in Sec. III. Notice that in the package all the calculations
of the integrals over the prior distributions are performed
discretely. Hence, for now the input prior distribution is re-
quired to be an array, instead of a continuous function. p is
an array representing the values of p(x) with respect to x. It
is multidimensional in the case of multiparameter estimation,
i.e., the entry number of x are at least two. The input rho is a
(multidimensional) list of matrices representing the values of
density matrix with respect to all values of x, which can be al-
ternatively generated via the function BayesInput() if specific
functions of H and ∂xH on x can be provided. M=[] is a list of
matrices representing a set of POVM and its default setting is
a SIC-POVM. y is an array representing the results obtained in
an experiment. The result corresponds to the POVM operator
input in M, which means it is an integer between 0 and d − 1
with d the entry number of the set of POVM. The type of
estimator can be set via estimator = “ ” and currently it has
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FIG. 4. Iteration of posterior distribution by the Bayes’ rule. The
inset shows the change of estimated value as a function of iteration
for MAP (solid-red line), MLE (dashed-blue line), and expectation
(dash-dotted-green line). The dotted-black line represents the true
value.

two choices. When estimator = “mean” the estimator is the
expected value, and when estimator = “MAP” the estimator is
the MAP. The output pout (a multidimensional array) and xout
(an array) are the final posterior distribution and estimated
value of x obtained via the chosen estimator. When savefile =
True, two files “pout.npy” and “xout.npy” will be generated,
which include the updated p(x) and the corresponding optimal
x in all rounds. If the users call this function in the full-Julia
package, the output files are “pout.csv” and “xout.csv”.

Example. Now let us consider a simple example with the
Hamiltonian

H = κω0

2
(σ1 cos x + σ3 sin x), (22)

where x, κ are two dimensionless parameters and x is taken
as the unknown one. Planck units are applied here (h̄ = 1)
and ω0 is set to be 1. The initial state is taken as |+〉 and
the target time ω0T = 1. The prior distribution is assumed
to be uniform in the regime [0, π/2]. The measurement is
{|+〉〈+|, |−〉〈−|}. The results in experiment are simulated by
a random generation according to the probabilities p(±|x) =
〈±|ρ|±〉 with respect to the value x = π/4. As shown in
Fig. 4, with the growth of iteration number, the deviation
decreases monotonously and the estimated value (center value
of the distribution) approaches to π/4, which can also be
confirmed by the convergence of estimated value (solid-red
line) shown in the inset. As a matter of fact, here the max-
imum likelihood estimation (MLE) can also provide similar
performance by taking the likelihood function with the MAP
estimator x̂ = argmaxx

∏
i p(yi|x) (dashed-blue line in the in-

set). In QuanEstimation, this MLE can be calculated by the
function

When savefile = True, two files “Lout.npy” and “xout.npy”
will be generated including all the data in the iterations.

In Bayesian estimation, another useful tool is the average
Bayesian cost [44] for the quadratic cost, which is defined by

C̄ :=
∫

p(x)
∑

y

p(y|x)(x − x̂)TW (x − x̂) dx (23)

with W the weight matrix. In QuanEstimation, this average
Bayesian cost can be calculated via the function:

Here x and p are the same with those in Bayes(). xest is a list
of arrays representing the estimator x̂. The ith entry of each
array in xest represents the estimator with respect to ith result.
In the case of the single-parameter scenario, W is chosen to be
1 regardless of the input. The average Bayesian cost satisfies
the inequality [14]

C̄ �
∫

p(x)(xTW x)dx −
∑

ab

WabTr(ρ̄L̄aL̄b), (24)

where ρ̄ := ∫
p(x)ρ dx and the operator L̄a is determined by

the equation
∫

xa p(x)ρ dx = (L̄aρ̄ + ρ̄L̄a)/2. In the case of
the single-parameter scenario, the inequality above reduces to

C̄ �
∫

p(x)x2 dx − Tr(ρ̄L̄2) (25)

and represents a bound, which is always saturable—the op-
timal measurement correspond to projection measurement in
the eigenbasis of L̄, while the corresponding eigenvalues rep-
resent the estimated values of the parameter. If the mean
value

∫
p(x)x dx is subtracted to zero, then the inequality

above can be rewritten into C̄ � δ2x − Tr(ρ̄L̄2) with δ2x :=∫
p(x)x2 dx − ∫

p(x)x dx the variance of x under the prior
distribution. In QuanEstimation, the bound given in Eq. (24)
can be calculated via the following function:

Here the inputs x and p are the some with those in Bayes() and
BayesCost(). W represents the weight matrix and the default
value is the identity matrix.

E. Bayesian Cramér-Rao bounds

In the Bayesian scenarios, the quantum Cramér-Rao
Bounds and Holevo Cramér-Rao bound are not appropriate
to grasp the the ultimate precision limits as they are ignorant
of the prior information. Still, Bayesian Cramér-Rao bounds
can be used instead. In these scenarios, the covariance matrix
is redefined as

cov(x̂, {�y})=
∫

p(x)
∑

y

Tr(ρ�y)(x̂−x)(x̂−x)Tdx, (26)

where the integral
∫

dx := ∫∫∫
dx0dx1 · · · . In such cases, one

version of the Bayesian Cramér-Rao bound (BCRB) is of the
form

cov(x̂, {�y}) �
∫

p(x)(BI−1B + bbT)dx, (27)

where I is the CFIM, and b = (b(x0), b(x1), . . . )T is the
vector of biases, i.e., b(xa) = ∑

y x̂a p(y|x) − xa for each
xa with p(y|x) the conditional probability. B is a diago-
nal matrix with the ath entry Baa = 1 + [b′]a. Here b′ :=
(∂0b(x0), ∂1b(x1), . . . )T. The quantum correspondence of this

043057-9



MAO ZHANG et al. PHYSICAL REVIEW RESEARCH 4, 043057 (2022)

bound (BQCRB) reads

cov(x̂, {�y}) �
∫

p(x)(BF−1B + bbT)dx, (28)

where F is the QFIM of all types. As a matter of fact, there
exists a similar version of Eq. (27), which can be expressed by

cov(x̂, {�y}) � B I−1
Bayes B +

∫
p(x)bbTdx, (29)

where IBayes = ∫
p(x)Idx is the average CFIM with I the

CFIM defined in Eq. (6). B = ∫
p(x)Bdx is the average of B.

Its quantum correspondence reads

cov(x̂, {�y}) � BF−1
Bayes B +

∫
p(x)bbTdx, (30)

where FBayes = ∫
p(x)Fdx is average QFIM with F the

QFIM of all types.
Another version of the Bayesian Cramér-Rao bound is of

the form

cov(x̂, {�y}) �
∫

p(x)G(Ip + I )−1GTdx, (31)

and its quantum correspondence can be expressed by

cov(x̂, {�y}) �
∫

p(x)G(Ip + F )−1GTdx, (32)

where the entries of Ip and G are defined by

[Ip]ab := [∂a ln p(x)][∂b ln p(x)], (33)

and Gab := [∂b ln p(x)][b]a + Baaδab. The derivations and
thorough discussions of these bounds will be further discussed
in an independent paper, which will be announced in a short
time.

The functions in QuanEstimation to calculate IBayes and
FBayes are:

“ ”

And the functions for the calculations of BCRBs and
BQCRBs are:

“ ”

The input x and p are the same with those in the function
Bayes(). dp is a (multidimensional) list of arrays representing
the derivatives of the prior distribution, which is only essential
when btype = 3. In the case that btype = 1 and btype = 2, it
could be set as []. rho and drho are (multidimensional) lists
representing the values of ρ and ∂xρ. For example, if the input
x includes three arrays, which are the values of x0, x1, and x2

for the integral, then the i jkth entry of rho and drho are a ma-
trix ρ and a list [∂0ρ, ∂1ρ, ∂2ρ] with respect to the values [x0]i,
[x1] j , and [x2]k . Here [x0]i, [x1] j , and [x2]k represent the ith,
jth, and kth value in the first, second, and third array in x. As
a matter of fact, if the users can provide specific functions of
H and ∂xH on x, rho and drho can be alternatively generated
via the functions BayesInput() and Lindblad() [or Kraus()]. b
and db are two lists of arrays representing b and b′, and the

default settings for both of them are zero vectors (unbiased).
In BCRB() the measurement is input via M = [], and if it
is empty, a set of rank-one SIC-POVM will be automatically
applied, similar to that in CFIM(). Moreover, btype = 1, btype
= 2, and btype = 3 represent the calculation of Eqs. (27),
(29), and (31). In the meantime, in BQCRB(), btype = 1, btype
= 2, and btype = 3 represent the calculation of Eqs. (28),
(30), and (32). Similar to QFIM(), LDtype = “ ” here is
the type of logarithmic derivatives, including three choices:
“SLD”, “RLD”, and “LLD”. Recently, Ref. [45] provide an
optimal biased bound based on the type-1 BQCRB in the case
of single-parameter estimation, which can be calculated in
QuanEstimation via the function:

“ ”

The input dp is an array containing the derivatives ∂x p. d2rho
is a list containing the second-order derivative of the density
matrix on the unknown parameter.

Another famous Bayesian version of Cramér-Rao bound is
introduced by Van Trees in 1968 [46], which is known as the
Van Trees bound (VTB). The VTB is expressed by

cov(x̂, {�y}) � (Iprior + IBayes)−1, (34)

where Iprior = ∫
p(x)Ipdx is the CFIM for p(x) with Ip de-

fined in Eq. (33). In the derivation, the assumption∫
∂a[b(xb)p(x)]dx = 0 (35)

is applied for all subscripts a and b. In 2011, Tsang, Wiseman
and Caves [47] provided a quantum correspondence of the
VTB (QVTB). The Tsang-Wiseman-Caves bound is of the
form

cov(x̂, {�y}) � (Iprior + FBayes)−1. (36)

The functions in QuanEstimation for the calculation of VTB
and QVTB are:

“ ”

Here dp is a (multidimensional) list of arrays representing the
derivatives of the prior distribution. For example, if x includes
3 arrays, which are the values of x0, x1, and x2 for the integral,
then the i jkth entry of dp is an array (∂0 p, ∂1 p, ∂2 p) with
respect to values [x0]i, [x1] j , and [x2]k .

Example. Let us still take the Hamiltonian in Eq. (22) and
initial state |+〉 as an example. x is still the parameter to
be estimated. The prior distribution is taken as a Gaussian
distribution

p(x) = 1

cη
√

2π
e
− (x−μ)2

2η2 (37)

in a finite regime [−π/2, π/2], where μ is the expectation, η

is the standard deviation, and c = 1
2 [erf ( π−2μ

2
√

2η
) + erf ( π+2μ

2
√

2η
)]

is the normalized coefficient. Here erf (x) := 2√
π

∫ x
0 e−t2

dt is
the error function. The measurement in the classical bounds
is taken as a set of SIC-POVM. The performance of the
classical and quantum Bayesian bounds are given in Figs. 5(a)
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FIG. 5. (a) The performance of classical Bayesian bounds, in-
cluding BCRB of type 1 (solid-red line), type 2 (dashed-green
line), type 3 (dotted-blue line), and VTB (dash-dotted-black line).
(b) The performance of quantum Bayesian bounds, including
BQCRB of type 1 (solid-red line), type 2 (dashed-green line), type 3
(dotted-blue line), QVTB (dash-dotted-black line), and QZZB (solid-
cyan-pentagram line). The parameters μ = 0 and κ = π/2 in the
plots. Planck units are applied here.

and 5(b). As shown in Fig. 5(a), in this case BCRB of type
1 (solid-red line) and type 2 (dashed-green line) are tighter
than type 3 (dotted-blue line) and VTB (dash-dotted-black
line) when the deviation η is small. With the increase of η,
BCRB of type 1 and type 3 coincide with each other, so do
BCRB of type 2 and VTB. Furthermore, BCRB of type 1
and type 3 are always tighter than type 2 and VTB in this
example. The performance of quantum Bayesian bounds are
similar, as shown in Fig. 5(b). BQCRB (solid-red line for type
1 and dashed-green line for type 2) are tighter than type 3
(dotted-green line) and QVTB (dash-dotted-black line) when
η is small and BQCRB of type 1 (type 2) and type 3 (QVTB)
coincide with each other for a large η.

F. Quantum Ziv-Zakai bound

Apart from the Cramér-Rao bounds, the Ziv-Zakai bound
is another useful bound in Bayesian scenarios. It was first pro-
vided by Ziv and Zakai in 1969 [48] for the single-parameter
estimation and then extended to the linear combination of
multiple parameters by Bell et al. [49], which is also referred
to as the Bell-Ziv-Zakai bound. In 2012, Tsang provided
a quantum correspondence of the Ziv-Zakai bound [50]
(QZZB), and in 2015 Berry et al. [51] provided a quantum

correspondence of the Bell-Ziv-Zakai bound. In QZZB, the
variance var(x̂, {�y}), a diagonal entry of the covariance ma-
trix, satisfies the following inequality:

var(x̂, {�y}) � 1

2

∫ ∞

0
dττV

∫ ∞

−∞
dx min{p(x), p(x + τ )}

×
(

1 − 1

2
||ρ(x) − ρ(x + τ )||

)
, (38)

where || · || is the trace norm. V is the “valley-filling” operator
satisfying V f (τ ) = maxh�0 f (τ + h). In the numerical calcu-
lations, the prior distribution has to be limited or truncated in a
finite regime [α, β], i.e., p(x) = 0 when x > β or x < α, and
then the QZZB reduces to

var(x̂, {�y}) � 1

2

∫ β−α

0
dττV

∫ β

α

dx min {p(x), p(x + τ )}

×
(

1 − 1

2
||ρ(x) − ρ(x + τ )||

)
. (39)

The function in QuanEstimation for the calculation of QZZB
is:

The performance of QZZB is also demonstrated with the
Hamiltonian in Eq. (22) and prior distribution in Eq. (37), as
shown in Fig. 5(b). In this example, its performance (solid-
cyan-pentagram line) is worse than BQCRB and QVTB.
However, this tightness relation may dramatically change in
other systems or with other prior distributions. Hence, in a
specific scenario using QuanEstimation to perform a thorough
comparison would be a good choice to find the tightest tool for
the scheme design.

V. METROLOGICAL RESOURCES

The improvement of precision usually means a higher
consumption of resources. For example, the repetition of ex-
periments will make the deviation of the unknown parameter
to scale proportionally to 1/

√
n (n the repetition number)

in theory. The repetition number or the total time is thus
the resource responsible for this improvement. Constraint on
quantum resources is an important aspect in the study of quan-
tum parameter estimation, and is crucial to reveal the quantum
advantage achievable in practical protocols. The numerical
calculations of some typical resources have been added in
QuTiP, such as various types of entropy and the concurrence.
Hence, we do not need to rewrite them in QuanEstimation.
Currently, two additional metrological resources, spin squeez-
ing and the time to reach a given precision limit are provided
in the package. The spin squeezing can be calculated via the
function:

“ ” “ ”

Here the input rho is a matrix representing the state. The basis
of the state can be adjusted via basis = “ ”. Two options
“Dicke” and “Pauli” represent the Dicke basis and the orig-
inal basis of each spin. basis = “Pauli” here is equivalent to
choose basis = “uncoupled” in the function jspin() in QuTiP.
Two types of spin squeezing can be calculated in this function.
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output = “KU” means the output is the one given by Kitagawa
and Ueda [52], and output = “WBIMH” means the output is
the one given by Wineland et al. [53].

The time to reach a given precision limit can be calculated
via the function:

Notice that the dynamics needs to be run first before using
this function. For example, it is available to be called after the
calling of both Lindblad() and Lindblad.expm(). The input f
is a float number representing the given value of the precision
limit. The time is searched within the regime defined by the
input tspan (an array). func is the handle of a function func()
depicting the precision limit. *args is the corresponding input
parameters, in which rho and drho should be the output of
Lindblad.expm() [or Lindblad.ode() and any other method that
may included in the future]. **kwargs is the keyword argu-
ments in func(). The difference between input parameters and
keyword arguments in QuanEstimation is that the keyword
arguments have default values and thus one does not have to
assign values to them when calling the function. Currently, all
the asymptotic bounds discussed in Sec. IV are available to be
called here.

VI. CONTROL OPTIMIZATION

Quantum control is a leading approach in quantum metrol-
ogy to achieve the improvement of measurement precision
and boost the resistance to decoherence. This is possible
thanks to high controllability of typical quantum metrological
setups. A paradigmatic controllable Hamiltonian is of the
form

H = H0(x) +
K∑

k=1

uk (t )Hk, (40)

where H0(x) is the free Hamiltonian containing the unknown
parameters x and Hk is the kth control Hamiltonian with the
corresponding control amplitude uk (t ). In quantum parameter
estimation, the aim of control is to improve the precision
of the unknown parameters. Hence, natural choices for the
the objective function f are the various metrological bounds.
The quantum Cramér-Rao bounds are easiest to calculate and
hence will typically be the first choice. In the single-parameter
estimation, the QFI or CFI can be taken as the objective func-
tion, depending whether the measurement can be optimized or
is fixed. In the multiparameter scenario, the objective function
can be Tr(WF−1), Tr(WI−1), or the HCRB.

Searching the optimal controls in order to achieve the
maximum or minimum values of an objective function is the
core task in quantum control. Most existing optimization al-
gorithms, such as Gradient ascent pulse engineering [54–56],
Krotov’s method [57–59], and machine learning [60,61], are
capable of providing useful control strategies in quantum
parameter estimation. The gradient-based algorithms usually
perform well in small-scale systems. For complex problems
where the gradient-based methods are more challenging or
even fail to work at all, gradient-free algorithms are a good
alternative. Here we introduce several control algorithms in

quantum parameter estimation that have been added into our
package and give some illustrations.

First, we present the specific code in QuanEstimation for
the execution of the control optimization,

“
“

“

”
”

”

The input tspan is an array representing the time for the evo-
lution. rho0 is a matrix representing the density matrix of the
initial state. H0 is a matrix representing the free Hamiltonian
H0(x) and Hc is a list containing the control Hamiltonians, i.e.,
[H1, H2, . . . ]. dH is a list of matrices representing ∂xH0. In the
case that only one entry exists in dH, the objective functions
in control.QFIM() and control.CFIM() are the QFI and CFI,
and if more than one entries are input, the objective functions
are Tr(WF−1) and Tr(WI−1). Different types of QFIM can
be selected as the objective function via the variable LDtype
= “ ”, which includes three options “SLD”, “RLD”, and
“LLD”. The measurement for CFI/CFIM is input via M =
[] in control.CFIM() and the default value is a SIC-POVM.
The weight matrix W can be manually input via W = [], and
the default value is the identity matrix.

In some cases, the control amplitudes have to be limited in
a regime, for example [a, b], which can be realized by input
ctrl_bound = [a,b]. If no value is input, the default regime
is [−∞,∞]. decay = [] is a list of decay operators and
corresponding decay rates for the master equation in Eq. (1)
and its input rule is decay = [[Gamma_1,gamma_1],...]. The
dynamics is solved via the matrix exponential by default,
which can be switched to ODE by setting dyn_method =
“ode”. The default value for savefile is False, which means
only the controls obtained in the final episode will be saved
in the file named “controls.csv”, and if it is set to be True,
the controls obtained in all episodes will be saved in this
file. The values of QFI, CFI, Tr(WF−1) or Tr(WI−1) in all
episodes will be saved regardless of this setting in the file
named “f.csv”. Another file named “total_reward.csv” will
also be saved to save the total rewards in all episodes when
DDPG is chosen as the optimization method. Here the word
“episode” is referred to as a round of update of the objective
function in the scenario of optimization.

The switch of optimization algorithms can be realized by
method = “ ”, and the corresponding parameters can be
set via **kwargs. All available algorithms in QuanEstima-
tion are given in Table I together with the corresponding
default parameter settings. Notice that in the case that method
= “auto-GRAPE” is applied, dyn_method = “ode” is not
available for now. In some algorithms maybe more than
one set of guessed controls are needed, and if not enough
sets are input then random-value controls will be generated
automatically to fit the number. In the meantime, if exces-
sive number of sets are input, only the suitable number of
controls will be used. LDtype = “SLD” is the only choice
when method = “GRAPE” as the QFIMs based on RLD and
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TABLE I. Available control methods in QuanEstimation and cor-
responding default parameter settings. Notice that auto-GRAPE and
GRAPE are not available when control.HCRB() is called.

Algorithms method= **kwargs and default values

auto-GRAPE “auto-GRAPE” “Adam” True
(GRAPE) (“GRAPE”) “ctrl0” []

“max_episode” 300
“epsilon” 0.01
“beta1” 0.90
“beta2” 0.99

PSO “PSO” “p_num” 10
“ctrl0” []

“max_episode” [1000,100]
“c0” 1.0
“c1” 2.0
“c2” 2.0

“seed” 1234
DE “DE” “p_num” 10

“ctrl0” []
“max_episode” 1000

“c” 1.0
“cr” 0.5

“seed” 1234
DDPG “DDPG” “ctrl0” []

“max_episode” 500
“layer_num” 3
“layer_dim” 200

“seed” 1234

LLD are unavailable to be the objective function for GRAPE
in the package. All the aforementioned algorithms will be
thoroughly introduced and discussed with examples in the
following subsections.

Apart from the QFIM and CFIM, the HCRB can also be
taken as the objective function in the case of multiparameter
estimation, which can be realized by calling control.HCRB().
Notice that auto-GRAPE and GRAPE are not available in
method = “ ” here as the calculation of HCRB is per-
formed via optimizations (semidefinite programming), not
direct calculations. Due to the equivalence between the HCRB
and quantum Cramér-Rao bound in the single-parameter es-
timation, if control.HCRB() is called in this case, the entire
program will be terminated and a line of reminder will arise
to remind the users to invoke control.QFIM() instead.

A. Gradient ascent pulse engineering

The gradient ascent pulse engineering algorithm (GRAPE)
was developed by Khaneja et al. [54] in 2005 for the design
of pulse sequences in the NMR systems, and then applied into
the quantum parameter estimation for the generation of opti-
mal controls [55,56], in which the gradients of the objective
function f (T ) at a fixed time T were obtained analytically. In
the pseudocode given in Ref. [17], the propagators between
any two time points have to be saved, which would occupy a
large amount of memory during the computation and make it
difficult to deal with high-dimensional Hamiltonians or long-
time evolutions. To solve this problem, a modified pseudocode
is provided as given in Algorithm 1. In this modified version,
after obtaining the evolved state ρt and ∂xρt , the gradient

Algorithm 1: GRAPE
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δρt/δuk (t ) and its derivatives with respect to x are then cal-
culated via the equations

δρt

δuk (t )
= −i�tH×

k (ρt ) (41)

with �t a small time interval, H×
k (·) = [Hk, ·] the commutator

between Hk and other operators, and

∂x

(
δρt

δuk (t )

)
= −i�tH×

k (∂xρt ), (42)

The gradients δρt/δuk ( j) ( j < t) are calculated adaptively
according to the equation

δρt

δuk ( j)
= e�tLt

δρt−1

δuk ( j)
(43)

and its derivatives are obtained via

∂x

(
δρt

δuk ( j)

)
= (∂xe�tLt )

δρt−1

δuk ( j)
+e�tLt ∂x

(
δρt−1

δuk ( j)

)
. (44)

In this process, only the gradients δρt/δuk (t ), δρt/δuk ( j) and
their derivatives need to be saved for the further use in the next
round, and will be deleted after that. This operation avoids the
usage of propagators and thus saves a lot of memory during
the computation. In this way, the gradients δρT /δuk (t ) (t is
any time here) are obtained adaptively and δ f (T )/δuk (t ) can
then be calculated accordingly. The specific expression of
δ f (T )/δuk (t ) can be found in Refs. [13,55,56]. Adam [62]
is also applied in this algorithm for the further improvement
of the computational efficiency.

Consider the dynamics governed by Eq. (12) with parame-
ter settings in Fig. 2, and the control Hamiltonian

u1(t )σ1 + u2(t )σ2 + u3(t )σ3. (45)

In the case of ωtrT = 5 with zeros as the initial guess of the
controls, the QFI converges in 35 rounds with Adam, yet it
takes 780 rounds to converge when Adam is not applied.

B. Auto-GRAPE

In the multiparameter estimation, the gradients of
Tr(WF−1) and Tr(WI−1) are very difficult to obtain an-
alytically when the length of x is large. This is because
the analytical calculation of F−1 and I−1 are difficult, if
not completely impossible. Hence, the functions

∑
a Waa/Faa

and
∑

a Waa/Iaa, which are lower bounds of Tr(WF−1) and
Tr(WI−1), or their inverse functions, are taken as the super-
seded objective functions in GRAPE [56]. Although it has
been proved that these superseded functions show positive
performance on the generation of controls, it is still possi-
ble that the direct use of Tr(WF−1) and Tr(WI−1) might
bring better results. To investigate it, hereby we provide a
new GRAPE algorithm based on the automatic differentiation
technology. This algorithm is referred to as the auto-GRAPE
in this paper.

Automatic differentiation (AD) is an emerging numerical
technology in machine learning to evaluate the exact deriva-
tives of an objective function [63]. Recently, Song et al. [64]
used AD to generate controls with complex and optional
constraints. AD decomposes the calculation of the objective
function into some basic arithmetic and apply the chain rules

Algorithm 2: auto-GRAPE

to calculate the derivatives. AD not only provides high preci-
sion results of the derivatives, but its computing complexity
is no more than the calculation of the objective function.
Hence, it would be very useful to evaluate the gradient in
GRAPE. Here we use a Julia package Zygote [65] to imple-
ment our auto-GRAPE algorithm. auto-GRAPE is available
for all types of QFIM in the package. In the following we only
discuss the SLD-based QFIM for simplicity. The pseudocode
of auto-GRAPE for SLD-based QFIM is given in Algorithm
2. In Zygote, “array mutation” operations should be avoided
as the evaluation of differentiation for such operations are not
supported currently. However, the general numerical calcu-
lation of the SLD is finished via the calculation of its each
entry, as shown in Eq. (9). This entry-by-entry calculation
would inevitably cause mutations of the array, and cannot
directly apply automatic differentiation for now. Here we
introduce two methods to realize AD in our package. One
method is to avoid the entry-by-entry calculation directly.
Luckily, Šafránek provided a method for the calculation of
SLD and QFIM in the Liouville space [66], which just avoids
the entry-by-entry calculation. Denote vec(A) as the column
vector with respect to a d-dimensional matrix A in Liouville
space and vec(A)† as the conjugate transpose of vec(A). The
entry of A is defined by [vec(A)]id+ j := Ai j (i, j ∈ [0, d − 1]
and the subscript of vec(A) starts from 0). Then the SLD can
be calculated via the equation [66]

vec(La) = 2(ρ ⊗ 1 + 1 ⊗ ρ∗)−1vec(∂aρ), (46)

where ρ∗ is the conjugate of ρ. The above calculation pro-
cedure treats the array as an entirety and only contains basic
linear algebra operations on the array. Hence, it is available
to be used for the implementation of automatic differentia-
tion with the existing tools like Zygote. In QuanEstimation,
the vectorization of matrices are performed with the afore-
mentioned method, i.e., [vec(A)]id+ j := Ai j , in all Python
scripts, yet in the Julia scripts, the vectorization is taken as
[vec(A)]i+ jd := Ai j for the calculation convenience. Since all
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FIG. 6. The schematic of chain rules in automatic differentiation
with the logarithmic derivative related functions as the objective
function.

the outputs are converted back to the matrices, this difference
would not affect the user experience. This method is easy to
be implemented in coding, yet the dimension growth of the
calculation in the Liouville space would significantly affect
the computing efficiency and memory occupation. Therefore,
we introduce the second method as follows.

The core of AD is utilizing the chain rules to evaluate the
derivatives of the objective function. As illustrated in Fig. 6,
in AD the value of the objective function f is evaluated from
left to right (red arrows), and the derivatives are calculated
backwards (blue arrows), which is also called pullback in the
language of AD. In our case, the differentiation of f on a
control amplitude uk needs to be evaluated through all three
paths, from f to ρ, from f to ∂xρ (if f is a function of
∂xρ) and from f to G to L. Here L represents the SLDs
of all parameters and G := G(L) = G(ρ, ∂xρ) could be any
intermediate function. For example, the contribution of the
path from f to ρ to the derivative df /duk is ∂ f

∂ρ

∂ρ

∂uk
. Notice

that here ∂ f /∂ρ is a formal derivative. The paths to ρ and
∂xρ can be routinely solved in Zygote, however, the path to
L cannot be solved due to the entry-by-entry calculation of
SLD in Eq. (9), which causes the difficulty to generate ∂L/∂ρ

and ∂L/∂ (∂xρ), and therefore ∂G/∂ρ and ∂G/∂ (∂xρ) cannot
be obtained. The chain rules in AD cannot be applied then.
Hence, we need to manually provide ∂G/∂ρ and ∂G/∂ (∂xρ)
to let AD work in our case. To do it, one should first know that
the total differentiation dGαβ (the αβth entry of dG) can be
evaluated via the equation

dGαβ =
∑

i j

∂Gαβ

∂Li j
dLi j + ∂Gαβ

∂ (Li j )∗
d (Li j )

∗, (47)

which can be written into a more compact matrix form

dGαβ = Tr

((
∂Gαβ

∂L

)T

dL +
(

∂Gαβ

∂L∗

)T

dL∗
)

. (48)

Due to the fact that the SLD is a Hermitian matrix, one can
have dL∗ = dLT, and the equation above reduces to

dGαβ = Tr

((
∂Gαβ

∂L

)T

dL + ∂Gαβ

∂LT
dL

)

= 2Tr

((
∂Gαβ

∂L

)T

dL

)
. (49)

Now we introduce an auxiliary function h, which satisfies(
∂Gαβ

∂L

)T

= ρhT + hTρ. (50)

This equation is a typical Lyapunov equation and can be
numerically solved. Substituting the equation above into the
expression of dGαβ , one can find that

dGαβ = 2Tr(hTdLρ + hTρdL). (51)

Due to the fact that ∂xρ = (ρL + Lρ)/2, we have ρdL +
(dL)ρ = 2d (∂xρ) − (dρ)L − Ldρ, which means

dGαβ = 2Tr(2hTd (∂xρ)) − 2Tr((LhT + hTL)dρ). (52)

Next, since G = G(ρ, ∂xρ), dGαβ can also be expressed by

dGαβ = 2Tr

((
∂Gαβ

∂ρ

)T

dρ+
(

∂Gαβ

∂ (∂xρ)

)T

d (∂xρ)

)
. (53)

This equation is derived through a similar calculation proce-
dure for Eq. (49). Comparing this equation with Eq. (52), one
can see that

∂Gαβ

∂ρ
= 2h, (54)

∂Gαβ

∂ (∂xρ)
= −hLT − LTh. (55)

With these expressions, ∂G/∂ρ and ∂G/∂ (∂xρ) can be ob-
tained correspondingly. In this way, the entire path from f
to L is connected. Together with the other two paths, AD can
be fully applied in our case. The performance of computing
time and memory allocation for the calculation of the gradient
of QFI between these two realization methods of AD are
compared with different dimensional density matrices. The
dimension is denoted by N . As shown in the upper table in
Table II, the computing time and memory allocation of the
second method are better than the first one except for the
case of N = 2, and this advantage becomes very significant
when N is large. Moreover, the computing time and memory
allocation of the first method grow fast with the increase of
dimension, which is reasonable as the calculations, especially
the diagonalization, in the first method are performed in the
N2-dimensional space. There is no data of the first method
when N is larger than 7 as the memory occupation has ex-
ceeded our computer’s memory. From this comparison, one
can see that the second method performs better than the first
one in basically all aspects and hence is chosen as the default
auto-GRAPE method in QuanEstimation.

Example. Consider the dynamics in Eq. (12) and control
Hamiltonian in Eq. (45). Now define

δcω := 1/
√
Iωω, (56)

δqω := 1/
√
Fωω (57)

as the theoretical optimal deviations with and without fixed
measurement. The corresponding performance of controls
generated via GRAPE and auto-GRAPE are shown in
Figs. 7(a) and 7(b), which are obtained by 300 episodes in
general. In QuanEstimation, the number of episodes can be
set via the variable max_episode = 300 in **kwargs in Ta-
ble I. As shown in these plots, the values of

√
ωtrT δqω in (a)
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TABLE II. Upper table: Comparison of the average computing
time and memory allocation for the calculation of the gradient of QFI
between two realization methods of AD. M1 and M2 represent the
first and second methods. N is the dimension of the density matrix.
The density matrix and its derivative are generated randomly in the
test. Lower table: Comparison of the average computing time per
episode between GRAPE and auto-GRAPE with different target time
T . Parallel computing is not applied here. KB, MB, and GB represent
Kilobyte, Megabyte, and Gigabyte, respectively.

M1 M2

Computing Memory Computing Memory
N time allocation time allocation

2 4.46 μs 2.99 KB 5.14 μs 2.24 KB
22 18.09 μs 17.01 KB 11.17 μs 5.46 KB
23 257.65 μs 217.63 KB 35.84 μs 18.79 KB
24 4.55 ms 3.34 MB 151.51 μs 90.18 KB
25 174.61 ms 53.01 MB 962.17 μs 501.85 KB
26 9.45 s 846.18 MB 11.05 ms 3.31 MB
27 6151.51 s 137.95 GB 45.70 ms 230.98 MB
28 347.50 ms 1.73 GB
29 3.29 s 13.36 GB
210 41.51 s 105.08 GB

ωT 5 10 15 20 30 40

GRAPE 5.23 s 21.75 s 44.95 s 71.00 s 178.56 s 373.89 s
auto-GRAPE 0.32 s 0.77 s 1.45 s 2.19 s 4.14 s 7.00 s

and
√

ωtrT δcω in (b) obtained via GRAPE (red pentagrams)
and auto-GRAPE (blue circles) basically coincide with each
other, which is reasonable as they are intrinsically the same
algorithm, just with different gradient calculation methods.
However, auto-GRAPE shows a significant improvement on
the computing time consumption, as given in the lower table
in Table II, especially for a large target time T . The growth
of average computing time per episode with the increase of
T in auto-GRAPE is quite insignificant compared to that
in GRAPE. Adam can be applied by setting Adam = True
in **kwargs. For the sake of a good performance, one can
set appropriate Adam parameters in **kwargs, including the
learning rate epsilon, the exponential decay rate for the first
(second) moment estimates beta1 (beta2). The default values
of these parameters in the package are 0.01 and 0.90 (0.99). If
Adam = False, the controls are updated with the constant step
epsilon. Due to the convergence problem of Adam in some
cases, several points in the figure are obtained by a second
running of the code with a constant step, which takes the
optimal control obtained in the first round (with Adam) as the
initial guess.

In some scenarios, the time resolution of the control ampli-
tude could be limited if the dynamics is too fast or the target
time is too short. Hence, in the numerical optimization in such
cases, the time steps of control cannot equal to that of the
dynamics. Here we use the total control amplitude number
Nc = T/�tc with �tc the control time step, to represent the
time resolution of the control and we assume �tc is fixed in the

FIG. 7. The performance of control-enhanced (a)
√

ωtrT δqω and (b)
√

ωtrT δcω with different Nc. The optimal controls are generated via
GRAPE and auto-GRAPE with the dynamics in Eq. (12) and control Hamiltonian in Eq. (45). The dotted-black lines in (a) and (b) represent√

ωtrT δqω and
√

ωtrT δcω without control. The red pentagrams are those obtained via GRAPE with a full Nc, i.e., Nc equals to the number of
time steps. The blue circles, green crosses, purple diamonds, cyan-downward triangles, and orange-upward triangles represent those obtained
via auto-GRAPE with Nc being full, 10, 6, 3, and 1, respectively. Other parameters are set to be the same with those in Fig. 2. [(c1)–(c4)] The
optimal controls in the case of ωtrT = 20 with Nc being (c1) 1, (c2) 3, (c3) 6, and (c4) 10, respectively. The true value ωtr is set to be 1. Planck
units are applied here.
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FIG. 8. (a) Illustration of the basic operation of PSO in mth round of episode. The personal best (with the blue subscript pb) for each
particle in this round is obtained by comparing all the values of f of this particle in all previous rounds including the current one. The global
best (with the red subscript gb) is obtained by comparing the values of f of all personal bests in this round. The light-gray areas represent the
process of comparison, which takes the values of {uk} with respect to the maximum value of f . (b) The control-enhanced values of

√
ωtrT δqω

with a full Nc (red pentagrams) and Nc = 6 (green circles), where the controls are generated via PSO. (c) The optimal controls for Nc = 6 in
the case of ωtrT = 20. The true value ωtr is set to be 1. Planck units are applied here.

dynamics. A full Nc in Figs. 7(a) and 7(b) means �tc equals
to the dynamical time step �t . In the numerical calculation,
it is possible that quotient of �tc by �t is not an integer,
indicating that the existing time of all control amplitudes
cannot be equivalent. To avoid this problem, in QuanEsti-
mation the input number (Nt ) of dynamical time steps is
automatically adjusted to kNc with k the smallest integer to
let kNc > Nt , if it is not already an integer multiple of Nc.
For example, if Nc = 3 and Nt = 100, then Nt is adjusted
to 102. Notice that in the package GRAPE is not available
to deal with a nonfull Nc scenario for a technical reason.
If GRAPE is invoked in this case, it would automatically
go back to auto-GRAPE. As a matter of fact, auto-GRAPE
outperforms GRAPE in most aspects, therefore, we strongly
suggest the users choose auto-GRAPE, instead of GRAPE, in
practice.

The performance of controls with limited Nc is also demon-
strated in Figs. 7(a) and 7(b) with the dynamics in Eq. (12)
and control Hamiltonian in Eq. (45). It can be seen that
the constant-value controls (Nc = 1, orange-upward triangles)
cannot reduce the values of δcω and δqω. In the case of
fixed measurement it can only suppress the oscillation of
δcω. The performance improves with the increase of Nc and
when Nc = 10, the values of δqω and δcω are very close to
those with a full Nc. This fact indicates that inputting 10
control amplitudes is good enough in this case and a full
Nc control is unnecessary. A limited Nc here could be eas-
ier to realize in practice and hence benefit the experimental
realization.

C. Particle swarm optimization

Particle swarm optimization (PSO) is a well-used gradient-
free method in optimizations [67,68], and has been applied in
the detection of gravitational waves [69], the characterization
of open systems [70], the prediction of crystal structure [71],
and in quantum metrology it has been used to generate adap-
tive measurement schemes in phase estimations [72,73].

A typical version of PSO includes a certain number (de-
noted by P) of parallel particles. In quantum control, these
particles are just P sets of controls {uk} labeled by {uk}i for
i = 1, . . . , P. The value of {uk} of ith particle in mth round
of episode is further denoted by {uk}i

m. The basic optimization
philosophy of PSO is given in Fig. 8(a) and the pseudocode
is given in Algorithm 3. In the pseudocode, {uk}i

0,pb and
f ({uk}i

0,pb) are just formal notations representing the initial-
ization of the personal bests. There exist two basic concepts
in PSO, the personal best and global best. In the mth round of
episode, the personal best of ith particle ({uk}i

m,pb) is assigned
by the {uk} with respect to the maximum value of f among all
previous episodes of this particle, namely,

{uk}i
m,pb = arg

(
max

n∈[1,m]
f
({uk}i

n

))
(58)

with arg(·) the argument. For example, as illustrated in Fig. 8,
if f 1

j is the maximum in { f 1
1 , f 1

2 , . . . , f 1
m}, then {uk}1

m,pb is
assigned by {uk}1

j . Once the personal bests are obtained for all
particles, the global best is assigned by the {uk} with respect
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Algorithm 3: PSO

to the maximum value of f among all personal bests, i.e.,

{uk}m,gb = arg

(
max

i∈[1,P]
f
({uk}i

m,pb

))
. (59)

With all personal bests and the global best, the velocity {δuk}i
m

for the ith particle is calculated by

{δuk}i
m = c0{δuk}i

m−1+rand() · c1
({uk}i

m,pb − {uk}i
m

)
+ rand() · c2

({uk}m,gb − {uk}i
m

)
, (60)

where rand() represents a random number within [0,1] and
c0, c1, c2 are three positive constant numbers. In the pack-
age, these parameters can be adjusted in **kwargs, shown
in Table I, via the variables c0, c1, and c2. A typical choice
for these constants is c0 = 1, c1 = c2 = 2, which are also
the default values in the package. max_episode in **kwargs
represents the episode number to run. If it is only set to be a
number, for example max_episode = 1000, the program will
continuously run 1000 episodes. However, if it is a list, for
example max_episode = [1000,100], the program will also
run 1000 episodes in total but replace {uk} of all particles with
the current global best every 100 episodes. p_num represents
the particle number and is set to be 10 in default. The initial
guesses of control can be input via ctrl0 and the default choice
ctrl0 = [] means all the guesses are randomly generated. In
the case that the number of input guessed controls is less than
the particle number, the algorithm will generate the remaining
ones randomly. On the other hand, if the number is larger than
the particle number, only the suitable number of controls will
be used. The optimization result can be realized repeatedly by
fixing the value of the variable seed, and its default value is
1234 in the package.

Example. Here we also illustrate the performance of con-
trols generated via PSO with the dynamics in Eq. (12) and
control Hamiltonian in Eq. (45). δqω is defined in Eq. (57).
The performance of controls with a full Nc (red pentagrams)
and Nc = 6 (green circles) are shown in Fig. 8(b), and the cor-

responding optimal controls for Nc = 6 are given in Fig. 8(c).
Compared to the result obtained via auto-GRAPE (dash-
dotted-gray line for a full Nc and dashed-light-blue line for
Nc = 6), the performance of PSO is worse than that of auto-
GRAPE, especially in the case of a large target time T with
a full Nc. This is due to the fact that the search space is too
large for PSO in such cases as the time step �t is fixed in
the calculation and a larger T means a larger value of Nc.
For example, in the case of ωtrT = 40 and Nc = 10 000, the
total parameter number in the optimization is 30 000. PSO
can provide a good performance when the dimension of the
search space is limited. In the case of Nc = 6, the result of
PSO basically coincides with that of auto-GRAPE. Hence, for
those large systems that the calculation of gradient is too time-
consuming or the search space is limited, the gradient-free
methods like PSO would show their powers.

D. Differential evolution

Differential evolution (DE) is another useful gradient-free
algorithm in optimizations [74]. It has been used to design
adaptive measurements in quantum phase estimation [75,76],
high-quality control pulses in quantum information [77,78],
and help to improve the learning performance in quantum
open systems [79,80]. Different with PSO, DE would not
converge prematurely in general and its diversification is also
better since the best solution does not affect other solutions in
the population [81].

A typical DE includes a certain number (denoted by P) of
{uk}i, which is usually referred to as the populations in the
language of DE. In QuanEstimation, the population number
and the guessed controls can be set via the variables p_num
and ctrl0 in **kwargs, as shown in Table I. The rule for the
usage of ctrl0 here is the same as ctrl0 in PSO. After the
initialization of all {uk}i (i ∈ [1, P]), two important processes
in DE, mutation and crossover, are performed, as illustrated
in Fig. 9(a) with the pseudocode in Algorithm 4. In the step
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FIG. 9. (a) Illustration of the optimization process of DE, which includes four steps: initialization, mutation, crossover, and selection.
(b) The control-enhanced values of

√
ωtrT δqω with a full Nc (red pentagrams) and Nc = 6 (green circles), where the controls are generated via

DE. (c) The optimal controls for Nc = 6 in the case of ωtrT = 20. The true value ωtr is set to be 1. Planck units are applied here.

of mutation, three populations {uk}p1 , {uk}p2 and {uk}p3 are
randomly picked from all {uk}i, and used to generate a new
population {Gk} via the equation

{Gk} = {uk}p1 + c({uk}p2 − {uk}p3 ) (61)

with c ∈ [0, 1] (or [0,2]) a constant number. The next step is
the crossover. At the beginning of this step, a random integer a
is generated in the regime [1, Nc], which is used to make sure

the crossover happens definitely. Then another new population
{Qk} is generated for each {uk}i utilizing {Gk}. Now we take
jth entry of Qk ([Qk] j) as an example to show the generation
rule. In the first, a random number r is picked in the regime
[0,1]. Then [Qk] j is assigned via the equation

[Qk] j =
{

[Gk] j, if r � cr or j = a,

[uk] j, if r > cr and j �= a,
(62)

Algorithm 4: DE
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where [Gk] j is the jth entry of Gk and [uk] j is the jth entry
of a uk in {uk}i. This equation means if r is no larger than a
given constant cr (usually called crossover constant in DE),
then assign [Gk] j to [Qk] j , otherwise assign [uk] j to [Qk] j . In
the meantime, the ath entry of Qk always takes the value of
[Gk] j regardless the value of r to make sure at least one point
mutates. After the crossover, the values of objective functions
f ({uk}i ) and f ({Qk}) are compared, and {uk}i is replaced by
{Qk} if f ({Qk}) is larger. In the package, c and cr can be
adjusted via the variables c and cr in **kwargs, and the default
values are 1.0 and 0.5.

Example. The performance of controls generated via DE
is also illustrated with the dynamics in Eq. (12) and control
Hamiltonian in Eq. (45). δqω is defined in Eq. (57). As shown
in Fig. 9(b), different with PSO, the performance of DE with a
full Nc (red pentagrams) is very close to that of auto-GRAPE
(dash-dotted-gray line), even for a large target time T , which
indicates that DE works better than PSO in this example. More
surprisingly, in the case of Nc = 6, DE (green circles) not only
outperforms PSO, but also significantly outperforms auto-
GRAPE (dashed-light-blue line). This result indicates that no
algorithm has the absolute advantage in general. Comparison
and combination of different algorithms are a better approach
to design optimal controls in quantum metrology, which can
be conveniently finished via QuanEstimation. The optimal
controls obtained via DE for Nc = 6 are given in Fig. 9(c) in
the case of ωtrT = 20. The results above are obtained with
1000 episodes, which can be adjusted via max_episode =
1000 in **kwargs.

E. Deep Deterministic Policy Gradients

Deep deterministic policy gradients (DDPG) is a powerful
tool in machine learning [82] and has already been applied
in quantum physics to perform quantum multiparameter es-
timation [61] and enhance the generation of spin squeezing
[83]. The pseudocode of DDPG for quantum estimation and
the corresponding flow chart can be found in Ref. [17], and
the details will not be repeatedly addressed herein.

Example. The performance of controls generated via
DDPG in the case of single-parameter estimation is also illus-
trated with the dynamics in Eq. (12) and control Hamiltonian
in Eq. (45), as shown in Fig. 10(a). δqω is defined in Eq. (57).
The reward is taken as the logarithm of the ratio between the
controlled and noncontrolled values of the QFI at time t . It
can be seen that the performance of DDPG with a full Nc

(red pentagrams) shows a significant disparity with that of
auto-GRAPE (dash-dotted-gray line). A more surprising fact
is that it is even worse than the performance of both auto-
GRAPE (dashed-light-blue line) and DDPG (green circles)
with Nc = 6. And the performance of DDPG with Nc = 6 also
presents no advantage compared to PSO and DE. However, we
cannot rashly say that PSO and DE outperform DDPG here as
DDPG involves way more parameters and maybe a suitable
set of parameters would let its performance comparable or
even better than PSO and DE. Nevertheless, we can still safely
to say that PSO and DE, especially DE, are easier to find
optimal controls in this example and DDPG does not present a
general advantage here. The total reward in the case of ωtrT =
20 with a full Nc and Nc = 6 are given in Figs. 10(b) and 10(c),

FIG. 10. (a) The control-enhanced values of
√

ωtrT δqω with a
full Nc (red pentagrams) and Nc = 6 (green circles), where the con-
trols are generated via DDPG. [(b),(c)] The change of total reward
in the episodes in the case of (b) a full Nc and (c) Nc = 6. (d) The
controls obtained via DDPG for Nc = 6 in the case of ωtrT = 20.
The true value ωtr is set to be 1. Planck units are applied here.

respectively. The total reward indeed increases and converges
for a full Nc, but the final performance is only sightly better
than the noncontrolled value [dotted-black line in Fig. 10(a)].
For Nc = 6, the total reward does not significantly increase,
which means the corresponding performance of δqω basically
comes from the average performance of random controls.
The controls obtained via DDPG for Nc = 6 are shown in
Fig. 10(d).

F. Performance of the convergence speed

Apart from the improvement of the objective function, the
convergence speed is also an important aspect of an algorithm
to evaluate its performance. Here we illustrate the conver-
gence performance of different algorithms in Fig. 11 in the
single-parameter scenario discussed previously, namely, the
dynamics in Eq. (12) and control Hamiltonian in Eq. (45)
with a full Nc. As shown in Fig. 11(a), GRAPE (dashed-
red line) and auto-GRAPE (dotted-black line) show higher
convergence speed than PSO (solid-green line) and DE
(dash-dotted-cyan line). This phenomenon coincides with
the common understanding that the gradient-based methods
converge faster than gradient-free methods in general. DE
converges slower than GRAPE and auto-GRAPE, but the
final performance of QFI basically coincides with them. PSO
presents the slowest speed in this example and the final result
of QFI is also worse than others. DDPG is not involved in this
figure as its improvement on the QFI is not as significant as
others.

The effect of Adam in auto-GRAPE is also illustrated
in Fig. 11(b). Denote ε as the learning rate in Adam. In
the case of constant-step update, auto-GRAPE with ε = 0.01
(dotted-black line) converges faster than that with ε = 0.005
(dash-dotted-green line), which is common and reasonable as
a large step usually implies a higher convergence speed. How-
ever, when Adam is invoked, this difference becomes very
insignificant and both lines (solid-gray line for ε = 0.01 and
dashed-blue line for ε = 0.005) converge faster than constant-
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FIG. 11. (a) The convergence performance of different algo-
rithms, including GRAPE (dashed-red line), auto-GRAPE (dotted-
black line), PSO (solid-green line) and DE (dash-dotted-cyan line).
(b) The convergence performance of auto-GRAPE with constant step
ε = 0.01 (dotted-black line), ε = 0.005 (dash-dotted-green line),
and with Adam (solid-gray line for ε = 0.01 and dashed-blue line
for ε = 0.005). The target time ωtrT = 20, and the true value ωtr is
set to be 1. Planck units are applied here.

step updates. However, it should be noticed that a large ε in
Adam may result in a strong oscillation of δqω in the episodes,
and it should be adjusted to smaller values if one wants to
avoid this phenomenon.

G. Multiparameter estimation

Compared to the single-parameter estimation, multiparam-
eter estimation is a more challenging problem in quantum
metrology. In this case, Tr(WF−1) cannot be used as the
objective function in the implementation of GRAPE as the
analytical calculation of F−1 is very difficult, if not fully
impossible, when the number of parameter is large. Hence, in
GRAPE when W = 1,

∑
a 1/Faa, a lower bound of Tr(F−1),

is taken as the superseded objective function [13,17,56]. Un-
fortunately,

∑
a Waa/Faa fails to be a valid lower bound for

a general W . In this case, to keep
∑

a Waa/Faa a valid lower
bound, the parameters for estimation have to be reorganized
by the linear combination of the original ones to let W be di-
agonal, which causes the inconvenience to implement GRAPE
in such cases. Different with GRAPE, this problem naturally
vanishes in auto-GRAPE as the inverse matrix F−1 is calcu-
lated automatically and so does the gradient. In the meantime,

PSO and DE would also not face such problems as they are
gradient free.

Example. Here we take an electron-nuclear spin system,
which can be readily realized in the nitrogen-vacancy centers,
as an example to demonstrate and compare the performance of
different algorithms included in QuanEstimation. The Hamil-
tonian of this system reads [84–86]

H0/h̄ = DS2
3 + gS B · S + gI B · I + S TAI, (63)

where Si = si ⊗ 1, and Ii = 1 ⊗ σi (i = 1, 2, 3) represent the
electron and nuclear (15N) operators with s1, s2, and s3 spin-1
operators. Their specific expressions are

s1 = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, s2 = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

and s3 = diag(1, 0,−1). The vectors S = (S1, S2, S3)T, I =
(I1, I2, I3)T and A is the hyperfine tensor. In this case, A =
diag(A1, A1, A2) with A1 and A2 the axial and transverse mag-
netic hyperfine coupling coefficients. The hyperfine coupling
between the magnetic field and electron are approximated to
be isotopic. The coefficients gS = geμB/h̄ and gI = gnμn/h̄.
Here ge (gn) is the g factor of the electron (nuclear), μB (μn)
is the Bohr (nuclear) magneton and h̄ is the Plank’s constant.
The control Hamiltonian is

Hc/h̄ =
3∑

i=1

�i(t )Si, (64)

where �i(t ) is a time-varying Rabi frequency. In practice, the
electron suffers from the noise of dephasing, which means
the dynamics of the full system is described by the master
equation

∂tρ = −i[H0 + Hc, ρ] + γ

2

(
S3ρS3 − S2

3ρ − ρS2
3

)
, (65)

with γ the dephasing rate, which is usually inverse propor-
tional to the dephasing time T ∗

2 .
Now we use this system as a controllable magnetometer

to estimate the magnetic field B, which is a three-parameter
estimation problem. The optimal controls can be obtained via
different algorithms. In this case, the initial state is taken as
(|1〉 + |−1〉) ⊗ |↑〉/√2, where (|1〉 + |−1〉)/

√
2 is an elec-

tron state with |1〉 (|−1〉) the eigenstate of s3 corresponding
to the eigenvalue 1 (−1). |↑〉 is a nuclear state and the
eigenstate of σ3 corresponding to the eigenvalue 1. W is
chosen to be 1. The systematic parameters are chosen as
D = 2π × 2.87 GHz, gS = 2π × 28.03 GHz/T, gI = 2π ×
4.32 MHz/T, A1 = 2π × 3.65 MHz, A2 = 2π × 3.03 MHz,
and the true values of B are B1 = B2 = B3 = 0.50 mT. The
dephasing rate γ = 2π × 1 MHz. All the parameter values
are selected according to Refs. [86,87].

The performance of controls given by different algorithms
is given in Fig. 12. The control amplitude is limited in
the regime [−20 MHz, 20 MHz]. In the case of a full Nc

[Nc = 2000T/(0.01 μs)], as shown in Fig. 12(a), the per-
formance of GRAPE (red pentagrams), auto-GRAPE (cyan
triangles), PSO (blue crosses), DE (yellow circles) and DDPG
(orange pluses) basically coincide for small target time
(T � 0.01 μs), and the reduction of Tr(WF−1) is limited
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FIG. 12. (a) The performance of controls generated via different
algorithms, including GRAPE (red pentagrams), auto-GRAPE (cyan
triangles) with full Nc, PSO (blue crosses) with full Nc, DE (yellow
circles) with full Nc and DDPG (orange pluses) with full Nc. (b) The
performance of controls generated via PSO (dark-blue diamonds),
DE (small-red-hollow circles) and DDPG (large-purple-hollow cir-
cles) with limited Nc (Nc = 10). W is chosen to be 1.

compared to the noncontrolled values (solid-black line). In
the regime of large target time (T > 0.01 μs), auto-GRAPE
shows the best performance. GRAPE is not applied in these
points as its time consumption is too heavy for our com-
puters. PSO and DE only find controls that provide slightly
enhancement on Tr(WF−1) in this regime. The different
behaviors of the performance are due to the large search
space in this case. For example, the total control num-
ber for T = 0.08 μs is 48 000 including all three controls
�1, �2, and �3. In such a large parameter space, different
with the gradient-based methods, the gradient-free methods
cannot promise to find optimal values. Hence, the gradient-
based methods would be a good choice in such cases.
However, one should notice that the gradient-based meth-
ods like auto-GRAPE could be more memory consuming
than gradient-based methods. In the case that the computer
memory is limited, one may have to choose gradient-free
methods.

In the case of a small search space, for example Nc = 10,
the performance of PSO and DE improve significantly, as
shown in Fig. 12(b). Both PSO (dark-blue diamonds) and
DE (smal-red-hollow circles) with Nc = 10 outperform the
full Nc cases, yet DDPG with Nc = 10 (large-purple-hollow
circles) does not show this behavior. Similar to the single-

parameter scenario, DE provides a better performance than
PSO and DDPG when the control number Nc is limited.
A more interesting fact is that for some target time, like
T = 0.03 μs, PSO and DE even provide comparable per-
formance with auto-GRAPE with a full Nc, indicating that
the control schemes given by PSO and DE in this case
not only meet the best precision limit, but are also simpler
toimplement in experiments than the full-Nc scheme given by
auto-GRAPE.

H. Minimum parametrization time optimization

The control optimizations discussed in the previous sub-
sections are performed with a fixed target time T . In some
scenarios, the goal is not to achieve the highest precision
within a fixed time, but to reach a given precision as soon as
possible. This problem requires the search of minimum time
to reach a given value of the objective function, which can be
realized in QuanEstimation in the class ControlOpt(). After
the callings of control = ControlOpt() and control.dynamics(),
one can use the following code to solve this problem:

“
““

”
””

Here the input f is a float number representing the given value
of the objective function. The type of objective function can
be adjusted via target = “ ”, which includes three options
“QFIM” (default), “CFIM”, and “HCRB”. The measurement
can be input via M = [] if necessary, and in this case the
objective function will be chosen as the CFIM regardless of
the setting in target = “ ”. In the case of target = “QFIM”, the
type of QFIM can be changed via LDtype = “ ”. The choices
include “SLD”, “RLD”, and “LLD”. method = “binary” rep-
resents the binary search (logarithmic search) and method =
“forward” represents the forward search from the beginning
of time. Choosing a suitable method may help to improve
the calculation efficiency. For example, if the users already
know that the minimum time is very small compared to T , the
forward search would be more efficient than the binary search.
Notice that the search is restricted in the regime [0, T ] where
T is given by the array tspan input in ControlOpt(), and the
current code can only deal with full-Nc controls. The outputs
are two files “mtspan.csv” and “controls.csv” containing the
array of time from the start to the searched minimum time and
the corresponding length of optimal controls, respectively.

VII. STATE OPTIMIZATION

Quantum resources like entanglement and squeezing are
key in quantum parameter estimation to demonstrate a
quantum enhanced precision. In contrast to the dynamical
resources like time or control, entanglement and squeezing are
usually embedded in the probe state, indicating that different
probe states would present dramatically different performance
on the precision. The search of optimal probe states is thus
an essential step in the design of optimal schemes. Vari-
ous methodologies, including direct analytical calculations
[88–101], semianalytical [102–110] and full numerical ap-
proaches [111–115], have been proposed and discussed. More
advances of the state optimization in quantum metrology can

043057-22



QUANESTIMATION: AN OPEN-SOURCE TOOLKIT … PHYSICAL REVIEW RESEARCH 4, 043057 (2022)

TABLE III. Available methods for state optimization in QuanEstimation and corresponding default parameter settings. Notice that AD is
not available when the HCRB are taken as the objective function.

Algorithms method= **kwargs and default values

AD “AD” “Adam” False
“psi0” []

“max_episode” 300
“epsilon” 0.01
“beta1” 0.90
“beta2” 0.99

PSO “PSO” “p_num” 10
“psi0” []

“max_episode” [1000,100]
“c0” 1.0
“c1” 2.0
“c2” 2.0

“seed” 1234
DE “DE” “p_num” 10

“psi0” []
“max_episode” 1000

“c” 1.0
“cr” 0.5

“seed” 1234
NM “NM” “p_num” 10

“psi0” []
“max_episode” 1000

“ar” 1.0
“ae” 2.0
“ac” 0.5
“as0” 0.5
“seed” 1234

RI “RI” “psi0” []
“max_episode” 300

“seed” 1234
DDPG “DDPG” “psi0” []

“max_episode” 500
“layer_num” 3
“layer_dim” 200

“seed” 1234

be found in a recent review [17]. QuanEstimation includes the
process of state optimization with various methods, including
both gradient-based and gradient-free methods. The specific
code in QuanEstimation for the execution of state optimiza-
tion are as follows:

“ ”

“ ”
“ ”

In the case that the parametrization is described by the
Kraus operators, replace state.dynamics() with the code
state.Kraus(K,dK). The parameters above have already been
introduced previously. The default settings W = [] and M
= [] means W = 1 and the measurement is a SIC-POVM.
The optimization method can be adjusted via method = “ ”
and corresponding parameters can be set via **kwargs. The

available optimization methods and corresponding default pa-
rameter settings are given in Table III. The dynamics can
also be solved with ODE by setting dyn_method = “ode”.
One exception is that when method = “AD” is applied. In
this case ODE is not available for now. Two files “f.csv” and
“states.csv” will be generated at the end of the program, which
include the values of the objective function in all episodes
and the final obtained optimal probe state. When savefile
= True, the states obtained in all episodes will be saved in
“states.csv”. In the multiparameter estimation, the HCRB can
also be chosen as the objective function by calling the code

Notice that if method = “AD”, state.HCRB() is not avail-
able. Similar to the control optimization, if the users invoke
state.HCRB() in the single-parameter scenario, a warning will
arise to remind them to call state.QFIM() instead.
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Algorithm 5: AD for pure states

In the previous section, we already showed the power
of automatic differentiation (AD) in the construction of
auto-GRAPE. Similarly, it can also be used in the state opti-
mization. Due to the convexity of the QFI and QFIM [11,13],
the optimal probe states are pure states in most scenarios.
Hence, we first consider the state optimization within the set
of pure states. The pseudocode of AD in state optimization
for pure states is given in Algorithm 5. In a specific basis
{|i〉〈i|}, a probe state could be expanded by |ψ〉 = ∑

i ci|i〉,
and the search of optimal probe states is equivalent to the
search of a set of normalized complex coefficients {ci}. In
AD, a guessed probe state is first given or generated and
evolved to the target time T according to the given dynamics,
during which the density matrices and corresponding deriva-
tives with respect to x are calculated and saved. Then after
calculating the objective function f (T ) at time T , all gradients
{δ f (T )/δci} are evaluated via the automatic differentiation,
and the coefficients {ci} are updated accordingly with the step
ε. This step can be adjusted via epsilon in **kwargs. Finally,
the updated coefficients are normalized as required by the
quantum mechanics. In the package, Adam is not applied by
default in AD and it can be turned on by setting Adam=True
in **kwargs.

Regarding the gradient-free methods, apart from the PSO,
DE and DDPG, QuanEstimation also contains the Nelder-
Mead algorithm (NM) [116], which has already been used by
Fröwis et al. [112] to perform the state optimization in the case
of collective spins. The detailed flow chart of NM to locate
the minimum value of an objective function can be found in
Ref. [17]. For the sake of self-consistency of the paper, here
we present its pseudocode in Algorithm 6 for the search of the
maximum value of f at the target time T .

In NM, n + 1 guessed states are input and sorted descend-
ingly according to the corresponding values of f , namely,
f (|ψ1〉) � · · · � f (|ψn+1〉). In one episode of optimization,
the average state |ψa〉 := 1√

Na

∑n
k=1 |ψk〉 and reflected state

|ψr〉 := 1√
Nr

[|ψa〉 + ar (|ψa〉 − |ψn+1〉)] are first calculated. In
the case that the reflected state is better than |ψ1〉, i.e., f (|ψr〉)
is larger than f (|ψ1〉), the expanded state |ψe〉 := 1√

Ne
[|ψa〉 +

ae(|ψr〉 − |ψa〉)] is then calculated and compared to the re-
flected state. If the reflected state is still better, then replace
|ψn+1〉 with |ψr〉, otherwise replace |ψn+1〉 with |ψe〉. In the

Algorithm 6: NM for pure states

case that the performance of the reflected state is in the middle
of |ψ1〉 and |ψn〉, just replace |ψn+1〉 with it. If its perfor-
mance is between |ψn〉 and |ψn+1〉, then the outside contracted
state |ψoc〉 := 1√

Noc
[|ψa〉 + ac(|ψ〉r − |ψa〉)] is calculated and

compared to the reflected state. |ψn+1〉 is replaced with |ψoc〉
if |ψoc〉 outperforms the reflected state, otherwise all states
{|ψk〉}, except the best one |ψ1〉, are replaced with the states

1√
Nk

[|ψ1〉 + as(|ψk〉 − |ψ1〉)] and the program goes to the
next episode. In the case that |ψr〉 is no better than any state
in {|ψk〉}, the inside contracted state |ψic〉 := 1√

Nic
[|ψa〉 −

ac(|ψa〉 − |ψn+1〉)] is then calculated and compared to |ψn+1〉.
If it is better than |ψn+1〉, replace |ψn+1〉 with it, otherwise
perform the same replacement operation to all states as done
previously. At the beginning of next round, all states are sorted
in descending order again. Na := 〈ψa|ψa〉 is the normalization
coefficient, same as Nr, Ne, Noc, and Nic. A general setting of

043057-24



QUANESTIMATION: AN OPEN-SOURCE TOOLKIT … PHYSICAL REVIEW RESEARCH 4, 043057 (2022)

Algorithm 7: RI

the coefficients are ar = 1.0, ae = 2.0, ac = as = 0.5, which
are also the default values in the package. These coefficients
can be adjusted in **kwargs (shown in Table III) via ar, ae,
ac, and as0. In the meantime, p_num in **kwargs represents
the state number n + 1.

Apart from the aforementioned algorithms, there also exist
dedicated algorithms for the state optimization in quantum
parameter estimation. Here we introduce a reverse iterative
algorithm (RI), which was first proposed in Refs. [117,118] in
the Bayesian estimation context, and then applied to the QFI
in Ref. [119]. In the case of single-parameter estimation, the
QFI can be rewritten into

Faa = sup
A

[2Tr(A∂aρ) − Tr(ρA2)]. (66)

This form is equivalent to the standard definition of the
QFI as can be seen by solving the maximization problem
2Tr(A∂aρ) − Tr(ρA2) with respect to A, which is formally a

quadratic function in matrix A and the resulting extremum
condition yields the standard linear equation for ∂aρ =
1
2 (Aρ + ρA), i.e., the optimal A = La is just the SLD operator.
When this solution is plugged into the formula and it yields
Tr(ρL2

a ), which is in agreement with the standard definition
of the QFI. Consider the parametrization process described by
the Kraus operators given in Eq. (4), ρ = ∑

i Ki(x)ρ0K†
i (x).

Taking into account Eq. (66), we see that the problem of
identifying the optimal input state ρ0 that maximizes the QFI,
can be written as a double maximization problem,

sup
ρ0

Faa = sup
A,ρ0

[2Tr(A∂aρ) − Tr(ρA2)]. (67)

This observation leads to an effective iterative protocol, where
for a fixed ρ0 we find the optimal A that maximizes the above
expression, and then fixing the optimal A found in the previous
step we look for the optimal ρ0. In order to implement the pro-
cedure, note that the QFI can be rewritten in the “Heisenberg
picture” form, where the Kraus operators effectively act on the
La operators, as

Faa = Tr(ρ0M) (68)

with

M =
∑

i

2[(∂aK†
i )LaKi + K†

i La(∂aKi )] − K†
i L2

aKi. (69)

This equation indicates that for a fixed M (i.e., fixed A = La),
the optimal probe state is nothing but the eigenvector corre-
sponding to the maximum eigenvalue of M. The pseudocode
of this algorithm is given in Algorithm 7. In one round of the
optimization, M is calculated and its eigenvector with respect
to the maximum eigenvalue of M is calculated and used as
the probe state in the next round. In the package, this method

FIG. 13. (a) The performance of the optimal probe states searched via AD (cyan triangles), RI (red pluses), PSO (blue crosses), DE
(yellow circles), and NM (purple squares) in the Lipkin-Meshkov-Glick model in the absence of noise. The blue dots represents the value
of

√
λT δg for the coherent spin state |π/2, π/2〉, and the dash-dotted-black and dashed-black lines represent 1/

√
N and 1/N , respectively.

(b) The convergence performance of AD (dash-dotted-cyan line), RI (solid-red line), PSO (dotted-blue line), DE (dashed-yellow line), and NM
(dotted-star-purple line) in the case of N = 500. [(c1)–(c5)] The searched optimal states with different algorithms in the case of N = 100. The
target time is chosen as λT = 10. The true value of g is 0.5, and the value of h/λ is set to be 0.1. Planck units are applied here.
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can be invoked via method = “RI”. The number of episodes
and the seed can be adjusted in **kwargs (shown in Table III)
via max_episode and seed. Notice that this method is only
available when state.Kraus() is invoked, and in the current
version of the package, it only works for the single-parameter
quantum estimation, i.e., the objective function is the QFI. The
extension to the CFI and the case of multiparameter estimation
will be thoroughly discussed in an independent paper.

Example. Here we use the Lipkin-Meshkov-Glick model as
an example to show the state optimization with QuanEstima-
tion. The Hamiltonian of this model is [120]

HLMG = − λ

N

(
J2

1 + gJ2
2

) − hJ3, (70)

where Ji = 1
2

∑N
j=1 σ

( j)
i (i = 1, 2, 3) is the collective spin op-

erator with σ
( j)
i the ith Pauli matrix for the jth spin. N is the

total number of spins, λ is the spin-spin interaction strength,
h is the strength of the external field and g is the anisotropic
parameter. All searches with different algorithms start from
the coherent spin state |θ = π/2, φ = π/2〉, which is defined
by [121]

|θ, φ〉 = exp

(
−θ

2
e−iφJ+ + θ

2
eiφJ−

)
|J, J〉, (71)

where |J, J〉 is a Dicke state with J = N/2 and J± = J1 ± iJ2.
Here we consider the case that the search is constrained
to pure states with fixed J = N/2, which can be expressed
as |ψ〉 = ∑J

m=−J cm|J, m〉 with |J, m〉 a general Dicke state
and cm a complex coefficient. Let us first study the single-
parameter scenario with g the parameter to be estimated.

The performance of the optimal probe states searched via
AD (cyan triangles), RI (red pluses), PSO (blue crosses),
DE (yellow circles) and NM (purple squares) in the absence
of noise are given in Fig. 13(a). Here δg = 1/

√
Fgg is the

theoretical optimal deviation for g. The target time is taken
as λT = 10 (Planck units are applied). The performance of
DDPG is not good enough and thus not shown in the figure.
For a very small N , the searched optimal states do not show
an obvious advantage than the state |π/2, π/2〉 (blue dots).
However, when N is large the advantage becomes signifi-
cant, and the performance of all searched states outperform
|π/2, π/2〉 and 1/

√
N (dash-dotted-black line) in the case that

N is larger than around 6. For a large N , the performance of
the states obtained via AD and RI are the best and very close
to 1/N (dashed-black line). The performance of DE and PSO
basically coincide with each other (more accurately to say, the
performance of DE is slightly better than that of PSO), but is
worse than AD and RI. The performance of NM is the worst
in this example. Please note that we cannot rashly say that the
general performance of NM is worse than DE or PSO in the
state optimization just based on this plot as different parameter
settings in the algorithms sometimes could dramatically affect
the behaviors, yet we basically use the general recommended
settings in all algorithms. Nevertheless, different sensitivities
of the parameter settings on the final result still indicates that
DE and PSO are easier to locate optimal states than NM at
least in this example.

Regarding the convergence performance in this example,
as shown in Fig. 13(b), RI shows the fastest convergence speed

and the best optimized value. AD is slightly slower than RI but
still way faster than the gradient-free methods. However, the
disadvantage of AD is that occupation of memory grows very
fast with the increase of N . Hence, RI would be the best choice
to try first for the state optimization in the case of unitary
parametrization. In the last, as a demonstration, the searched
optimal states via different algorithms in the case of N = 100
are shown in Figs. 13(c1)–13(c5).

Example. When the collective dephasing is involved, the
dynamics of this system is governed by the following master
equation:

∂tρ = −i[HLMG, ρ] + γ
(
J3ρJ3 − 1

2

{
ρ, J2

3

})
(72)

with γ the decay rate. The performance of optimal probe
states searched via AD (solid-red line), PSO (dashed-star-blue
line), DE (dash-dotted-circle-cyan line), and NM (dashed-
purple line) are illustrated with N = 8 and N = 30 in
Figs. 14(a) and 14(c), respectively. The corresponding optimal
probe states are given in Figs. 14(b1)–14(b4) for N = 8 and
Figs. 14(d1)–14(d4) for N = 30. In both cases, the states
obtained via AD, PSO, and DE basically present coincidental
performance at time T , and outperform |π/2, π/2〉 (dotted-
black lines). Similar to the unitary scenario, the state obtained
via NM shows a worse performance at time T , and it even fails
to find a better state than |π/2, π/2〉 in the case of N = 30. In
this figure, the number of parallel sets (also called particles
in PSO and populations in DE) are 10 for all NM, DE, and
PSO. After increasing the number of parallel sets from 10
to 20 [labelled by NM (20) in the plot], the performance of
NM (dash-dotted-green line) improves in the case of N = 8,
which basically coincides with others. However, it still fails to
find a better state when N = 30. More number of parallel sets
may be requires for NM in this case. The states obtained via
NM (20) are shown in Figs. 14(b5) and 14(d5) for N = 8 and
N = 30, respectively.

Next we discuss the state optimization in multiparameter
estimation. Consider the simultaneous estimation of g and
h/λ in the Lipkin-Meshkov-Glick model with the dynamics
in Eq. (72). Figures 15(a) and 15(b) show the performance
of optimal states obtained via different algorithms for W =
diag(1/2, 1/2) and W = diag(1/3, 2/3), respectively. In both
cases AD (solid-red line) and DE (dash-dotted-circle-cyan
line) present the best performance at the target time λT = 10,
and DE even slightly outperform AD in the case of W =
diag(1/2, 1/2). The performance of PSO (dashed-star-blue
line) is worse than AD and DE, yet still better than NM
(dashed-purple line) and NM with 20 parallel sets (dash-
dotted-green line). The performance of NM does not even
outperform the coherent spin state |π/2, π/2〉 (dotted-black
line) in the case of W = diag(1/2, 1/2). Hence, apart from
gradient-based algorithm like AD, PSO, and DE would also
be good choices for state optimizations. The optimal states
obtained from AD and DE for W = diag(1/2, 1/2) and W =
diag(1/3, 2/3) are demonstrated in Figs. 15(c1) and 15(c2)
and Figs. 15(d1) and 15(d2), respectively. Although the per-
formance on Tr(WF−1) are basically the same for these
states, they may still have gaps on other properties like
the difficulties of preparation, the robustness to the imper-
fect preparation and so on. Hence, in practice one needs to
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FIG. 14. The performance of probe states obtained via different algorithms for (a) N = 8 and (c) N = 30 when the collective dephasing
exists. The solid-red line, dashed-star-blue line, dash-dotted-circle-cyan line, dashed-purple line represent the values of

√
λT δg for the searched

states obtained via AD, PSO, DE, and NM, respectively. The dash-dotted-green line represents that of NM with 20 parallel sets. The dotted-
black line represent the result of |π/2, π/2〉. [(b1)–(b5)] The searched optimal states for N = 8. [(d1)–(d5)] The searched optimal states for
N = 30. The target time λT = 10, and the true values of g is 0.5. The value of h/λ is set to be 0.1 and the decay rate γ /λ = 0.1. Planck units
are applied here.

compare these optimal states comprehensively case by case to
make wise choices.

VIII. MEASUREMENT OPTIMIZATION

Measurement is critical in quantum parameter estimation
[122–125]. On one hand, all asymptotic bounds require some
optimal measurements to attain if it is attainable, and hence
the search of optimal measurements is a natural requirement
in theory to approach the ultimate precision limit. On the
other hand, the choice of measurements is usually limited in
practice, and how to find conditioned optimal measurements
with the practical measurements in hand is an important step
towards the design of a realizable scheme. QuanEstimation
includes the optimization of measurements for several scenar-
ios. The first one is the optimization of rank-one projective
measurements. A set of projective measurements {�i} sat-
isfies �i� j = �iδi j and

∑
i �i = 1, and it can be rewritten

into {|φi〉〈φi|} with {|φi〉} an orthonormal basis in the Hilbert
space. In this way, the optimization of rank-one projective
measurement is equivalent to identifying the optimal basis,
which can be realized using PSO and DE in QuanEstimation.
In this case the automatic differentiation is not working very
well due to the Gram-Schmidt orthogonalization procedure
after the update of {|φi〉} according to the gradients. In some
cases, the realizable measurement has to be limited in the

linear combination of a given set of POVM, hence, the second
scenario is to find the optimal linear combination of an input
measurement. Moreover, in some cases the measurement {�i}
has to be fixed, but an arbitrary unitary operation can be
invoked before performing the measurement, which is equiva-
lent to a new measurement {U�iU †}. Based on this, the third
scenario is to find the optimal rotated measurement of an input
measurement.

The code in QuanEstimation for the execution of measure-
ment optimization are as follows:

“ ”

“ ”

“ ”

In the case that the parametrization is described by
the Kraus operators, replace m.dynamics() with the code
m.Kraus(rho0,K,dK). The optimization method can be ad-
justed via method = “ ” and corresponding parameters can be
set via **kwargs. The available optimization methods and cor-
responding default parameter settings are given in Table IV.
dyn_method = “ode” is also available here to invoke ODE for
soloving the dynamics, except the case that method = “AD”
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FIG. 15. The performance of different algorithms for the weight matrix (a) W = diag(1/2, 1/2) and (b) W = diag(1/3, 2/3). The solid-red
line, dashed-star-blue line, dash-dotted-circle-cyan line, dashed-purple line, and dash-dotted-green line represent the results obtained via AD,
PSO, DE, NM, and NM with 20 parallel sets, respectively. The dotted-black line represent the result of |π/2, π/2〉. [(c1),(c2)] The optimal
states obtained from AD and DE for W = diag(1/2, 1/2). [(d1),(d2)] The optimal states obtained from AD and DE for W = diag(1/3, 2/3).
The target time λT = 10. The true values of g and h/λ are set to be 0.5 and 0.1. Planck units are applied here.

is applied. Two files “f.csv” and “measurements.csv” will be
generated at the end of the program. When savefile = True,

TABLE IV. Available methods for measurement optimization
in QuanEstimation and corresponding default parameter settings.
Notice that AD is only available when mtype = “input”. Here mea-
surement0 is the initial guess of the measurement.

Algorithms method= **kwargs and default values

PSO “PSO” “p_num” 10
“measurement0” []
“max_episode” [1000,100]

“c0” 1.0
“c1” 2.0
“c2” 2.0

“seed” 1234
DE “DE” “p_num” 10

“measurement0” []
“max_episode” 1000

“c” 1.0
“cr” 0.5

“seed” 1234
AD “AD” “Adam” False
(available when “measurement0” []
mtype = “input”) “max_episode” 300

“epsilon” 0.01
“beta1” 0.90
“beta2” 0.99

the measurements obtained in all episodes will be saved in
“measurements.csv”.

The variable mtype = “ ” defines the type of scenarios for
the optimization, and currently it includes two options: mtype
= “projection” and mtype = “input”. The first one means
the optimization is performed in the first scenario, i.e., within
the set of projective measurements. In this case, minput = []
should keep empty. Since |φi〉 in a rank-one projective mea-
surement {|φi〉〈φi|} can be expended as |φi〉 = ∑

j Ci j | j〉 in a
given orthonormal basis {| j〉}, the optimization of the rank-
one projective measurement is equivalent to the optimization
of a complex matrix C. When the gradient-free methods are
applied, all entries in C are updated via the given algo-
rithm in each episode, then adjusted via the Gram-Schmidt
orthogonalization procedure to make sure {|φi〉〈φi|} is a le-
gitimate projective measurement, i.e., 〈φi|φ j〉 = δi j, ∀i, j and∑

i |φi〉〈φi| = 1. The second option mtype = “input” means
the optimization is performed in the second and third scenar-
ios. The input rule of minput for the second scenario is minput
= [“LC”, [Pi1,Pi2,...], m] and for the third one is minput =
[“rotation”, [Pi1,Pi2,...]]. Here [Pi1,Pi2,...] is a list of ma-
trices representing the input measurement [�1,�2, . . . ]. The
variable m in the second scenario is an integer representing
the number of operators of the output measurement, and thus
should be no larger than that of the input measurement. For
example, assume the input measurement is {�i}6

i=1 and input
4 in the position of m means the the output measurement is
{�′

i}4
i=1 where �′

i = ∑6
j=1 Bi j� j . The optimization is to find
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FIG. 16. (a) The performance of optimal projective measurements obtained via PSO (blue crosses) and DE (yellow circles) in the case
of single-parameter estimation. The dashed-cyan line represents the values of

√
ωtrT δqω and the dotted-black line represents the values

of
√

ωtrT δcω with respect to the projective measurement {�+ =|+〉〈+|,�− =|−〉〈−|}. The true value ωtr = 1. Planck units are applied in
this plot. (b) The performance of optimal projective measurements obtained via PSO (blue crosses) and DE (yellow circles) in the case of
multiparameter estimation in the absence of control. The black underlines and cyan triangles represent the values of Tr(WF−1) without
and with optimal control. The red pentagrams represent the controlled values of Tr(WI−1) with the optimal measurements obtained in the
noncontrolled scenario. (c) Demonstration of the optimal projective measurement obtained by DE in the multiparameter estimation at the target
time T = 0.04 μs. The red and blue bars represent the real and imaginary parts of the coefficients of the optimal measurement in the basis
{|1↑〉, |1↓〉, |0↑〉, |0↓〉, |−1↑〉, |−1↓〉}.

an optimal real matrix B for the optimal CFI or Tr(WI−1). To
make sure the updated measurement in each episode is still
a legitimate POVM, all entries of B are limited in the regime
[0,1] and

∑
i Bi j is required to be 1, which is realized by the

normalization process. In this scenario, apart from PSO and
DE, AD can also be implemented. In the third scenario, the
unitary operation is expressed by U = ∏

k exp(iskλk ) where
λk is a SU(N) generator and sk is a real number in the regime
[0, 2π ]. The optimization is to find an optimal set of {sk}
for the optimal CFI or Tr(WI−1), and similar to the second
scenario, AD is also available here besides PSO and DE. In the
case that mtype = “projection”, each entry of measurement0
in **kwargs is a list of arrays, and in the case that mtype =
“input”, each entry is an array.

Example. Now we consider two models to demonstrate
the measurement optimizations in the first scenario. The first
one is a single-parameter case with the single-qubit Hamilto-
nian H = ωσ3/2 and dynamics in Eq. (12). δcω and δqω are
defined in Eqs. (56) and (57). As shown in Fig. 16(a), δcω

for the projective measurement {�+ =|+〉〈+|,�− =|−〉〈−|}
(dotted-black line) can only reach δqω (dashed-cyan line) at
some specific time points, which has already been shown
in Sec. IV A. However, utilizing the optimal projective mea-
surements obtained via PSO (blue crosses) and DE (yellow

circles), δcω saturates δqω for all target time. This perfor-
mance coincides with the common understanding that the QFI
can be theoretically attained by certain optimal measurements.

In the case of multiparameter estimation, we use the
Hamiltonian in Eq. (63) and dynamics in Eq. (65) to
demonstrate the performance of the optimal projective mea-
surements. The magnetic field B is still the quantity to
be estimated. Different with the single-parameter case, the
values of Tr(WI−1) for the optimal measurements found
by PSO (blue crosses) and DE (yellow circles) cannot at-
tain Tr(WF−1) (black underlines) in the absence of control,
as shown in Fig. 16(b). The gap between Tr(WF−1) and
Tr(WI−1) is due to the fact that the quantum Cramér-Rao
bound is not attainable here. Next, together with the optimal
measurement, which gives the lowest Tr(WI−1), the control
is also invoked to further evaluate the reduction of Tr(WI−1).
Utilizing the optimal controls obtained via auto-GRAPE, the
values of Tr(WI−1) (red pentagrams) continue to reduce com-
pared to the noncontrolled case, yet it is still unable to attain
the controlled values of Tr(WF−1) (cyan triangles) in general
due to the attainability problem. Nevertheless, their differ-
ences are very insignificant for some target time, indicating
that the combined performance of the optimal measurement
and optimal control approaches to the ultimate precision limit.
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FIG. 17. Demonstration of the measurement optimization in the
second (LC) and third scenarios (rotation). The cyan-upward trian-
gles, blue crosses and yellow circles represent the performance of
optimal measurements found by AD, PSO, and DE, respectively in
the second scenario. The red-downward triangles, green diamonds
and orange pentagrams represent the performance of optimal mea-
surements found by AD, PSO, and DE in the third scenario.

The optimal measurement {|φ1〉〈φ1|, . . . , |φ6〉〈φ6|} obtained
by DE in the absence of control are demonstrated in Fig. 16(c).
The red and blue bars represent the real and imaginary parts
of the coefficients of |φ1〉 to |φ6〉 in the basis {|1↑〉, |1↓
〉, |0↑〉, |0↓〉, |−1↑〉, |−1↓〉}.

The optimizations in the second and third scenarios are
also demonstrated with the Hamiltonian in Eq. (63) and
dynamics in Eq. (65). The input measurement is taken as
{|i j〉〈i j|}i=0,±1; j=↑,↓, which includes 6 operators. In the sec-
ond scenario, the number of output POVM operators is set to
be 4. As shown in Fig. 17, the performance of measurements
found by AD (cyan-upward triangles), PSO (blue crosses) and
DE (yellow circles) approach to and even reach that of the
input measurement (magenta pluses). This fact indicates that
in this case, an optimal 4-operator measurement can reach
the performance of the original 6-operator measurement, and
the reduction of operator numbers may benefit the practical
precision of the measurements in experiments. In the third
scenario, the performance of optimal measurements found by
AD (red-downward triangles), PSO (green diamonds), and DE
(orange pentagrams) not only significantly better than that of
the input measurement, but also approach to the ultimate pre-
cision limit given by Tr(WF−1) (black underlines), indicating
that the performance of these optimal measurements are very
close to that of the global optimal measurements, if there exist
any. The probe states, the true values of the parameters to be
estimated and other parameters are set to be the same with
those in Sec. VI G.

IX. COMPREHENSIVE OPTIMIZATION

The previous sections focused on the univariate (single
variable) optimizations. However, in a practical scenario the
probe state, control (if available) and measurement may all
need to be optimized. More importantly, the optimal results
obtained for an univariate optimization may cease to be op-
timal when other variables are involved. For example, the

optimal probe state and measurement for the noncontrolled
case may not be optimal anymore in the controlled case.
Hence, sometimes a comprehensive optimization, i.e., simul-
taneous multivariate optimization, is in need.

QuanEstimation can deal with four types of multivariate
optimizations, including the optimizations of the probe state
and measurement (SM), the probe state and control (SC),
control and measurement (CM), and all three together (SCM).
In these scenarios, the key feature of comprehensive opti-
mization is that all variables are optimized simultaneously.
Regarding the objective function, in the cases of SM, CM,
and SCM, namely, when the measurement is involved, it has
to be dependent on the measurement. In current version of the
package it is chosen as the CFI or Tr(WI−1). In the case of
SC, the objective function could be either QFI/Tr(WF−1) or
CFI/Tr(WI−1) for a flexible or fixed choice of measurement.
The process of comprehensive optimizations and correspond-
ing objective functions have been illustrated in the first lines
(with gray background) in Figs. 18(a)–18(d). In QuanEstima-
tion, the code for the execution of comprehensive optimization
are:

“ ”

“ ”

“ ”

“ ”

In the case that the parametrization is described by the
Kraus operators, replace com.dynamics() with the code
com.Kraus(K,dK). All four types of comprehensive optimiza-
tions can be called through com.SM(), com.SC(), com.CM(),
and com.SCM(). Notice that if com.Kraus() is invoked, only
com.SM() is available as control is not suitable for the pa-
rameterization process described by the Kraus operators. In
com.CM(), the input rho0 is a matrix representing the fixed
probe state. In com.SC(), the objective function can be set
via target =“ ”, including three choices target = “QFIM”
(default), target = “CFIM”, and target = “HCRB”. If a set
of measurement is input via M = [], the objective function
will be automatically chosen as the CFIM regardless of the
input in target = “ ”. The type of QFIM can be adjusted
via LDtype = “ ” (“SLD”, “RLD”, “LLD”). The available
methods for the comprehensive optimization and correspond-
ing default parameter settings are given in Table V. Notice
that AD is only available when com.SC() is called and the
objective function is not the HCRB. At the end of the program,
“f.csv” will be generated including the values of the objective
function in all episodes. In the meantime, some or all of
the files “controls.csv”, “states.csv”, and “measurements.csv”
will also be generated according to the type of comprehensive
optimization.

Alternatively, the multivariate optimization can also be
finished by the combination of univariate optimizations, as
shown in the second lines in Figs. 18(a)–18(d). In the case of
SM (or CM) shown in Fig. 18(a) [Fig. 18(c)], one could first
perform the state (control) optimization with QFI/Tr(WF−1)
the objective function. Next, take the found optimal state
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FIG. 18. Illustration of the comprehensive optimization (first lines with gray background) and combination of univariate optimizations
(second lines) in four types of multivariate optimizations, including the optimizations of (a) the probe state and measurement (SM), (b) the
probe state and control (SC), (c) control and measurement (CM), and (d) the probe state, control, and measurement (SCM).

(control) as the fixed input, and further optimize the mea-
surement with CFI/Tr(WI−1) the objective function. If the
optimized values of the CFI/Tr(WI−1) in the second process

TABLE V. Available methods for comprehensive optimization
in QuanEstimation and corresponding default parameter settings.
Notice that AD is only available when com.SC() is called.

Algorithms method= **kwargs and default values

PSO “PSO” “p_num” 10
“psi0” []
“ctrl0” []

“measurement0” []
“max_episode” [1000,100]

“c0” 1.0
“c1” 2.0
“c2” 2.0

“seed” 1234
DE “DE” “p_num” 10

“psi0” []
“ctrl0” []

“measurement0” []
“max_episode” 1000

“c” 1.0
“cr” 0.5

“seed” 1234
AD “AD” “Adam” False
(available “psi0” []
for SC) “ctrl0” []

“measurement0” []
“max_episode” 300

“epsilon” 0.01
“beta1” 0.90
“beta2” 0.99

reaches the optimized values of the QFI/Tr(WF−1) in the
first process, the entire scheme is then optimal. Things could
be more complex in the multiparameter estimation due to
the attainability problem. The existence of the gap between
the optimized Tr(WI−1) and Tr(WF−1) does not necessar-
ily mean the scheme is not optimal. Nevertheless, there is
no doubt that a smaller gap always implies a better scheme
at least in theory. In the case of SC, the state optimization
and control optimization can be performed in turn with the
optimal quantity found in the previous turn as the fixed in-
put [Fig. 18(b)]. Same with the comprehensive optimization,
both QFI/Tr(WF−1) and CFI/Tr(WI−1) can be taken as the
objective function in this case. At last, in the case of SCM
the combination strategy in SC could be performed first with
QFI/Tr(WF−1) the objective function, and the measurement
is further optimized with the found optimal state and control
as the fixed input [Fig. 18(d)]. Same with the scenario of
SM, if the optimized CFI/Tr(WI−1) obtained in the second
process reaches the optimized QFI/Tr(WF−1) in the first
process, the entire scheme is optimal.

Example. Now we provide some demonstrations on the
comprehensive optimization with QuanEstimation and com-
pare their performance with the combination strategy. First,
consider a noncontrolled example with the single-qubit
Hamiltonian ωσ3/2, which is a SM scenario. The dynamics
is governed by Eq. (12) with decay rates γ−/ωtr = 0 and
γ+/ωtr = 0.1. The target time ωtrT = 20. In this case, the
optimized values of

√
ωtrT δcω in the comprehensive opti-

mization and combination strategy are both 0.608 (in the units
of ωtr , same below), equivalent to the optimal

√
ωtrT δqω

obtained in the solely state optimization, indicating that the
schemes found by both strategies are indeed optimal in theory.
Next we invoke the controls described in Eq. (45). In the case
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FIG. 19. Performance comparison between the comprehensive
optimization and combination strategy in the multiparameter esti-
mation in the case of SCM. The dashed-blue line represents the
optimization of Tr(WI−1) in the comprehensive optimization. The
solid-red lines represent the optimization of Tr(WF−1) in the SC
(first 500 episodes) and that of Tr(WI−1) in the measurement opti-
mization (last 500 episodes) in the combination strategy. The inset
shows the performance of different combination strategies in the
SC part due to the episode number of each optimization. All the
optimizations in the figure are finished by DE.

of SC, the optimized
√

ωtrT δqω obtained in the combination
strategy is 0.441, and that in the comprehensive optimization
is 0.440. Furthermore, in the case of SCM, the optimized√

ωtrT δcω provided by the combination strategy is 0.441,
equivalent to the optimal

√
ωtrT δqω obtained in the SC, and

that provided by the comprehensive optimization is 0.443. The
performance of these two strategies basically coincide with
each other in this example.

This equivalent performance may due to two facts: the
example is simple and the QFI is attainable in theory. In
the multiparameter estimation, these two strategies may show
divergent performance as the QFIM is not always guaranteed
to be attainable. For example, in the case of SCM, Tr(WF−1)
are first optimized in the SC. However, it is hard to say
whether the optimal probe state and control for an unattainable
Tr(WF−1) can still provide a good Tr(WI−1) and bene-
fit the subsequent measurement optimization. To investigate
it, we still take the nitrogen-vacancy center as an example.
The free Hamiltonian, control Hamiltonian, and dynamics are
described in Eqs. (63)–(65). The performance of comprehen-
sive optimization and combination strategy in the SCM are
shown in Fig. 19. The comprehensive optimization (dashed-
blue line), which takes Tr(WI−1) as the objective function,
basically converges at around 110 episodes. The combination
strategy (solid-red line) splits into two parts, the one in the
first 500 episodes is the combination optimization of SC, and
that in the last 500 episodes is the optimization of the mea-
surement. The gap between these two lines is actually the gap
between the optimal Tr(WF−1) and the value of Tr(WI−1)
with a random measurement. In the SC part, the alternative op-
timizations of the probe state and control can be done in differ-
ent ways due to the episode number of each optimization. As
shown in the inset of Fig. 19, here we test several selections,
including 20 episodes for each optimization (solid-circle-blue

line), 50 episodes for each optimization (dashed-green line),
100 episodes for each optimization (dash-dotted-cyan line),
200 episodes for state optimization and 300 episodes for
control optimization (solid-red line), and 300 episodes for
state optimization and 200 episodes for control optimization
(dotted-black line). In these selections, the fourth one, 200
episodes for state optimization and 300 episodes for control
optimization, shows the best performance at the end of the 500
episodes, and the corresponding optimal state and control are
chosen for the subsequent measurement optimization. In this
example, the final performance of the combination strategy is
better than that of the simultaneous strategy, indicating that
the unattainability of Tr(WF−1) in the SC does not present
negative effects on the final performance. However, this result
does not mean the combination strategy is always better in
general. In practice, the comparison of these two strategies
might still be needed case by case in the scheme design.

X. ADAPTIVE MEASUREMENT SCHEMES

Adaptive measurement is another common scenario in
quantum parameter estimation. In this scenario, apart from the
unknown parameters x, the Hamiltonian also includes a set of
tunable parameters u. A typical case is that the tunable param-
eters are invoked by the same way with x, resulting in the total
Hamiltonian H (x + u). In the point estimation approach, the
QFIM and CFIM computed at the true values of x may not
always provide the practically achievable precision due to the
fact that the actual working point may be slightly away from
the true values. Hence, the tunable parameters u are invoked to
let the Hamiltonian H (x + u) work at the optimal point xopt.
An obvious difficulty for the implementation of this scheme
is that one actually does not known the true values in practice,
which means u has to be given according to the estimated
values x̂, and the entire scheme would only be useful when it
is implemented adaptively. In the meantime, a preestimation
of x is usually needed. The inaccuracy of x̂ would result in
the inaccuracy of u, and x̂ + u is then inevitably far from
xopt, causing a lousy performance of the scheme. This scheme
has been demonstrated by Berni et al. [126] in optical phase
estimation with additional real-time feedback controls.

Now let us introduce in detail all steps required to imple-
ment this scheme. Consider the Hamiltonian H (x) where x is
restricted in a finite regime with a prior distribution p(x). The
first step is to find the optimal value xopt in this regime with
respect to the minimum Tr(WI−1) when the measurement is
fixed. If the measurement can be altered flexibly in practice,
xopt, together with the corresponding optimal measurement,
can be obtained with Tr(WF−1) the objective function.
Next, perform the preestimation via the Bayesian estimation
with the fixed or optimal measurement and update the prior
distribution with the posterior distribution in Eq. (21). When
p(x) has been updated to a reasonable narrow distribution,
the tunable parameters u are then invoked into the system. In
the nth round of this step, with the observed result y(n), the
posterior distribution is obtained via the Bayes’ rule as

p(x, u(n)|y(n) ) = p(y(n)|x, u(n) )p(x)∫
p(y(n)|x, u(n) )p(x)dx

, (73)

where u(n) is obtained in the (n − 1)th round. The
estimated value x̂(n) can be obtained through the MAP,
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x̂(n) = argmax p(x, u(n)|y(n) ). The value of u used in the
next round is obtained by u(n+1) = xopt − x̂(n), and the
prior distribution is also replaced by the current posterior
distribution. This update method of u is referred to as
the fixed optimal point method (FOP) in this paper. In
QuanEstimation, the preestimation can be finished with the
function Bayes() discussed in Sec. IV D, and the adaptive
process can be executed with the code

“ ”

“ ”

In the case that the parametrization process is de-
scribed by the Kraus operators, replace apt.dynamics() with
apt.Kraus(K,dK). The inputs x and p are the same with those
in Bayes(). The input H is a list of matrices representing
the Hamiltonian with respect to the values in x, and it is
multidimensional in the multiparameter case. dH is a (mul-
tidimensional) list with each entry also a list representing
∂xH with respect to the values in x. In the case that specific
functions of H and ∂xH can be provided, H and dH can be al-
ternatively generated via the function BayesInput() discussed
in Sec. III. In apt.CFIM(), M is the input measurement and the
default one is a set of SIC-POVM.

During the running of the code, three files “xout.csv”,
“y.csv”, and “pout.csv” will be generated including the data
of x̂, result y in all rounds of iteration and final obtained p(x).
In the case that savefile = True, “pout.csv” contains the data
of p(x) in all rounds. If the choice of measurement is flexible
in the experiment, before the invocation of apt.CFIM(), the
optimal measurement with respect to xopt can be first obtained
via calling M = apt.Mopt(W = []). In the case that the users
would like to run the preestimation with the optimal measure-
ment, they can just call apt.Mopt() first and input the optimal
measurement to Bayes() for the preestimation.

During the running of apt.CFIM(), the users should type
the result y obtained in practice on the screen and receive
the values of u used for the next round of experiment. In
the case that the users have already done the preestimation
by themselves, they can directly use Adapt() without calling
Bayes() first.

Apart from the FOP, u can also be updated via other
strategies. One such choice is utilizing the optimization of the
mutual information (MI), which is defined by

I (u)=
∫

p(x)
∑

y

p(y|x, u)log2

[
p(y|x, u)∫

p(x)p(y|x, u)dx

]
dx.

(74)

In the nth round, the prior distribution p(x) is updated via
Eq. (73), and u(n+1) is obtained by the equation u(n+1) =
argmax I (u). In QuanEstimation, this method can be invoked
by setting method = “MI” in Adapt(). Notice that in this
method a good preestimation should let the prior distribution
converges to zero at the boundary of the input x.

Let us still take the Hamiltonian in Eq. (22) as an ex-
ample. The initial state is |+〉 and the target time ω0T = 1

FIG. 20. Performance comparison between the adaptive schemes
realized by FOP (dashed-blue line) and MI (dash-dotted-green line),
and the nonadaptive schemes (solid-red line). The adaptive mea-
surement starts after 500 rounds of preestimation. The nonadaptive
scheme is a full Bayesian estimation. The dotted-black line repre-
sents the true value.

(Planck units are applied). The prior distribution is uniform
in the regime (−π/4, 3π/4). In this regime, zero is an op-
timal point and is chosen to be xopt. The measurement is
{|+〉〈+|, |−〉〈−|}. The results are simulated by generating
random values in the regime [0,1]. When it is smaller (larger)
than p(+|x), the posterior distribution is calculated with
p(+|x) [p(−|x)]. As shown in Fig. 20, after 500 rounds of
preestimation, the adaptive schemes realized by FOP (dashed-
blue line) and MI (dash-dotted-green line) indeed show better
performance, namely, smaller variance, compared to the non-
adaptive scheme (solid-red line), which is fully finished by
the Bayesian estimation. Notice that this figure is only a one-
time simulation of the experiment. The performance may be
different when the results are different.

Another famous adaptive scheme is the online adaptive
phase estimation, proposed by Berry et al. [127,128], in
the scenario of Mach-Zehnder interferometer (MZI). In this
scheme, after reading the result y(n) in the nth round, the value
of the tunable phase �n+1 or phase difference ��n+1 is gen-
erated. The relation between �n+1 and ��n+1 can be taken as
�n+1 = �n − (−1)y(n)

��n+1. Hentschel and Sanders [72,73]
further provided an off-line strategy with PSO, and the opti-
mization methods are further extended to DE [75] and genetic
algorithm [129] in recent years. Apart from the original ref-
erences, details of this scheme can also be found in a recent
review [17]. In QuanEstimation, this scheme can be executed
by the code

“ “” ”

The input rho0 is a matrix representing the probe state. The
output can be tuned between � and �� by setting output
= “phi” or output = “dphi” in apt.online() in the demon-
strating code. target = “sharpness” means the tunable phase
is obtained by the maximization of the sharpness function.
The specific formula of the sharpness function can be found
in Refs. [17,72,73,127,128]. Alternatively, the sharpness
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function can also be replaced by the mutual information in
Eq. (74) via setting target = “MI”, which has been both
theoretically and experimentally discussed by DiMario and
Becerra in 2020 [130].

The off-line strategy can also be executed by replacing
apt.online() with the code

“ ” “ ”

PSO is also available here (method = “PSO”). When the
entire program is finished, a file named “xout.csv” including
the data of output in all rounds will be generated. In the
case of online scheme, an additional file “y.csv” including the
result y in all rounds will also be generated. The design of
apt.general() here is to give us a space for the further inclusion
of the adaptive phase estimation in other optical scenarios
such as the SU(1,1) interferometers.

XI. SUMMARY

In this paper, we present a new open-source toolkit,
QuanEstimation, for the design of optimal schemes in the
quantum parameter estimation. The source of the package,
as well as the demonstrating code for the calculation of all
examples discussed in this paper, can be download in GitHub
[131] and the documentation is in Ref. [132]. This package
is based on both platforms of Python and Julia. The com-
bined structure is to guarantee the calculation efficiency of
Julia is fully utilized, and in the meantime, the people who
have no knowledge of Julia would have no obstacle in using
this package. In the meantime, a full Julia version of the
package is also available in GitHub [133], which is suit-
able for those familiar with Julia. QuanEstimation includes
several well-studied metrological tools in quantum param-
eter estimation, such as the various types of Cramér-Rao
bounds and their quantum correspondences, quantum Ziv-
Zakai bound, and Bayesian estimation. To perform the scheme
design, QuanEstimation can execute the optimizations of the

probe state, control, measurement, and the comprehensive
optimizations, namely, the simultaneous optimizations among
them. General adaptive measurement schemes as well as the
adaptive phase estimation can also be performed with this
toolkit.

QuanEstimation is suitable for many practical quantum
systems, especially those with finite-dimensional Hilbert
spaces, such as the trapped ions, nitrogen-vacancy centers,
and quantum circuits. Therefore, it is not only useful for
the theorists working in the field of quantum parameter
estimation, but could also be particularly useful for the exper-
imentalists who are not familiar with the theories in this field
yet intend to utilize them to design experimental schemes.
More functions and features will be constantly input into
the package and the calculation efficiency for certain specific
scenarios will be further improved in the future. Moreover,
the calculations in QuanEstimation are majorly based on the
density matrices, which may cause inefficiency when the di-
mension of Hilbert space is large. More technologies targeting
at the many-body systems, such as the sparse matrices and
matrix product states, will be further involved in the package
in the future. We believe that there is a good chance that
this package would become a common toolkit in the field of
quantum metrology for the numerical calculations and scheme
designs.
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[117] R. Demkowicz-Dobrzański, Optimal phase estimation with
arbitrary a priori knowledge, Phys. Rev. A 83, 061802(R)
(2011).

[118] K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański,
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