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The quantum speed limit is a fundamental concept in quantum mechanics, which aims at finding the minimum
time scale or the maximum dynamical speed for some fixed targets. In a large number of studies in this field,
the construction of valid bounds for the evolution time is always the core mission, yet the physics behind it and
some fundamental questions like which states can really fulfill the target are ignored. Understanding the physics
behind the bounds is at least as important as constructing attainable bounds. Here we provide an operational
approach for the definition of the quantum speed limit, which utilizes the set of states that can fulfill the target
to define the speed limit. Its performances in various scenarios have been investigated. For time-independent
Hamiltonians, it is inverse proportional to the difference between the highest and lowest energies. The fact that
its attainability does not require a zero ground-state energy suggests it can be used as an indicator of quantum
phase transitions. For time-dependent Hamiltonians, it is shown that, contrary to the results given by existing
bounds, the true speed limit should be independent of the time. Moreover, in the case of spontaneous emission,
we find a counterintuitive phenomenon that a lousy purity can benefit the reduction of the quantum speed limit.

DOI: 10.1103/PhysRevResearch.2.023299

I. INTRODUCTION

Coherence and entanglement are important resources in
quantum technology, especially in quantum information pro-
cessing, quantum computation [1], and quantum metrology
[2,3]. However, the existence of decoherence limits the life-
time of these quantum resources, and now is a major obstacle
for the development of quantum computers. Extending the
coherent time and reducing the operation time with bounded
energies are two common methods in general for this problem.
To reduce the time for performing a quantum gate, the system
needs to evolve as fast as possible, and the shortest time for
performing a quantum operation or evolving a state to a target
state is now referred to as the quantum speed limit (QSL).

The QSL has now been broadly used to characterize
quantum dynamics [4–18]. Specifically, they have found ap-
plications in open quantum systems [19–26], e.g., in the
identification of decoherence times [27,28], as well as in quan-
tum metrology [29–31], quantum control [32–36], and quan-
tum information processings like the preparation of quantum
states [37]. They have also been studied in nonequilibrium
dynamics [38], relativistic dynamics [39], and non-Hermitian
systems [40]. The recent introduction of speed limits in
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classical systems [41–43] suggests a unifying framework of
both quantum and classical bounds using information geome-
try [44]. Novel numerical methods like machine learning [45]
have also been applied in the study of the QSL. A thorough
review on the recent development of the QSL can be found in
Ref. [11].

For a pure state under unitary evolution, the evolved state
|ψ (t )〉 = exp(−iHt )|ψ (0)〉, where H is a time-independent
Hamiltonian of the system, |ψ (0)〉 is the initial state, and
t is the evolved time. Here and in the following, h̄ is set
to be 1. The most well-known scenario for the QSL is to
evolve a pure state to its orthogonal state. In this case, the
first bound for evolution time is τMT = π/(2�H ), where
�H :=

√
〈H2〉 − 〈H〉2 is the standard deviation of the Hamil-

tonian with 〈·〉 the expected value. This bound was given by
Mandelstam and Tamm in 1945 [4], known as the MT bound
today. Latter in 1998, Margolus and Levitin [5] provided
another bound for this scenario τML = π/(2〈H〉), which is
known as the ML bound now. In 2009, Levitin and Toffoli
[7] proved that the combined bound of τMT and τML is tight
by assuming the ground energy is zero. However, this bound
can only be attained by two-level systems with the specific
states 1√

2
(|E0〉 + eiφ|E1〉) (|E0〉, |E1〉 are the energy eigen-

states and φ ∈ [0, 2π ] is a relative phase) [11]. For a more
general target, this bound was numerically extended to τC =
max { A

�H , 2A2

π〈H〉 } by Giovannetti, Lloyd and Maccone [6,29],
with A = arccos f the Bures angle, as well as the target angle,
in this equation. f = Tr

√√
ρ0ρ1

√
ρ0 is the fidelity between

two quantum states ρ0 and ρ1.
Another well-used method for the construction of the

QSL is the geometric approach, which utilizes the metrics
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and geodesic lines in some differential manifolds. One such
example is the quantum Fisher information based on the
symmetric logarithmic derivative, which is proportional to the
Fubini-Study and Bures metrics for pure and mixed states
[46]. In 2013, Taddei et al. [19] used it to construct an
inequality for the QSL A �

∫ t
0

1
2

√
F (t ′)dt ′, where F (t ) is

the quantum Fisher information for the time t . The squared
infinitesimal distance then reads ds2 =∑μν gμνdλμdλν . In
the case that F is independent of time, an explicit expres-
sion of the QSL can be obtained as τF = 2A/

√
F . Simi-

larly to the previous mentioned tools, τF are not attainable
for mixed states and high-level systems. In around 2016,
Mondal et al. [47] extended the result to the Wigner-Yanase
skew information and connected the QSL with the quantum
coherence, and in the mean time Pires et al. [9] extended
this result to a family of contractive Riemannian metrics
(also known as a family of quantum Fisher information in
some literatures) [48]. For a density matrix ρ which is a
function of a set of parameters {λμ}, this family of metrics
is of the form gμν = 1

4 Tr[∂λμ
ρK−1(∂λν

ρ)], where K(·) is a
superoperator defined by K(·) = h(LR−1)R(·) with L (R)
also a superoperator defined by L(A) = Aρ [R(A) = ρA]. h(·)
here is called the Morozova-Čencov function, which satisfies
the operator monotone [h(A) � h(B) for A � B], self-inverse
[h(x) = xh(1/x)], and normalization [h(1) = 1]. Assuming
all the parameters in {λμ} are dependent on time, the geodesic
line L between the initial and evolved states satisfies

L �
∫ t

0

ds

dt ′ dt ′ =
∫ t

0

√∑
μν

gμν

dλμ

dt ′
dλν

dt ′ dt ′. (1)

The Bures angle is not the only tool to define the target
angle in the studies of the QSL. For example, in 2013 del
Campo et al. [20] used the relative purity and Campaioli et al.
[13] further used its angle to define the target angle. Other
types of fidelity are also considered [22,49]. The Bloch vector
is another well-used geometric representation of quantum
states in quantum mechanics, and the angle between the
Bloch vectors provides another tool to define the target angle
[13,26]. Considering the unitary evolution, Campaioli et al.
[13] provided an alternative inequality for the QSL as

t � τB = �

Q
, (2)

where � is the target angle defined via the Bloch vectors and

Q = 1

t

∫ t

0

√
2Tr(ρ2H2 − ρHρH )

Tr(ρ2) − 1/N
dt ′, (3)

with N the dimension of ρ.
In most theories in regard to the QSL, an explicit inequality

with respect to the time is hard to obtain since it usually
involves an integral which cannot be solved analytically,
especially in the case of time-dependent Hamiltonians. The
common method to deal with it is to formally add t and 1/t
in front of the integral simultaneously and treat 1/t and the
integral together as an expected value of some quantity with
respect to t . For example, in the inequality L �

∫ t
0 X (t ′)dt ′,

one can obtain a formal inequality on t as t � L/X̄ (t ) with
X̄ (t ) = 1

t

∫ t
0 X (t ′)dt ′ the average value with respect to time.

FIG. 1. Dynamical trajectory of a quantum state ρ. Only one
trajectory (blue line) exists for a noncontrolled fixed Hamiltonian
with a fixed decoherence. The states satisfying the target angle are
hence the intersections between the trajectory and the set of states
satisfying the target angle (black line), which is determined by the
trajectory itself. Therefore, the QSL should not be a function of time
in these cases.

The major problem of this formal solution is that X̄ (t ) is
a function of time in most cases, indicating the obtained
bound will change for different choice of time. However, this
result does not reflect the physics correctly. In the case of a
noncontrolled fixed Hamiltonian, the trajectory of evolution in
state space is fixed for a fixed decoherence mode and strength,
whether the Hamiltonian is time dependent or not. This is due
to the fact that the solution of states in a fixed differential
equation is unique.

This can also be understood from the perspective of
physics. Consider the unitary evolution for a specific initial
state ρ with a time-dependent Hamiltonian. The dynamical
operator is U (t1) = exp[−iT

∫ t1
0 H (t )dt] with T the time-

ordering operator. For a noncontrolled Hamiltonian, U (t1)
relies on t1, not t , indicating that U is fixed for a fixed t1. This
fact means the dynamical trajectory (blue line in Fig. 1) in the
state space for ρ is fixed. In the meantime, the set of states
satisfying the target angle for ρ is also fixed (black line in
Fig. 1). Therefore, the states that can reach the target angle
on the trajectory are the intersections between the blue and
black lines, which is actually determined by the trajectory
itself. Then the evolution time to reach the target angle for
ρ is fixed in this case due to the fact that the trajectory is
fixed. In a word, this evolution time is determined by the other
parameters (apart from the evolution time) in the Hamiltonian
and dissipative modes in the case of open systems, rather than
the time t . Hence, the QSL should not be dependent on the
time either. Most of the current theoretical tools cannot reveal
this fact, especially for the time-dependent Hamiltonians.
New approaches are still in need in this field to reveal the true
physics behind the QSL. This is a major motivation of this
paper.
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II. METHODOLOGY

To define the QSL, the physical scenario and target need to
be clarified first. The Bloch sphere is a natural representation
to show the geometry of quantum mechanics. It is known that
a N-dimensional density matrix ρ can be expressed by a Bloch
vector via the equation below [50]:

ρ = 1

N

(
1 +
√

N (N − 1)

2
�r · �λ
)

, (4)

where �r is the Bloch vector, 1 is the identity matrix, and
�λ is a (N2 − 1)-dimensional vector of SU(N ) generators.
Throughout this paper, the target we consider is defined via
the angle [13]

θ (t, �r) := arccos

( �r · �r(t )

|�r||�r(t )|
)

, (5)

where �r and �r(t ) are the initial and evolved states. θ ∈ (0, π ].
The physical scenario for the QSL is evolving some initial
state �r with a Hamiltonian H to any state satisfying the target
angle � (� is a known fixed angle defined by the above
equation).

For a Hamiltonian H , it is possible that not all states
in the state space can fulfill the target, yet this fact was
widely neglected in the previous studies of the QSL based on
inequalities. Here we first define a set S as the set of initial
states that can fulfill the target angle, i.e.,

S := {�r|θ (t, �r) = �, ∃t}. (6)

Similarly, we also define the set of reachable target states as

D :=
{
�rtar|� = arccos

( �r · �rtar

|�r||�rtar|
)

, �r ∈ S
}
. (7)

Here are some observations on S and D.
Proposition 1. S = D for periodic evolutions.
This can be easily proved since the dynamical trajectories

of periodic evolution are closed. Any two states on the same
trajectory can evolve to each other.

Proposition 2. For two target angles �1,�2 	= π , if the
dynamics of the quantum states is continuous, then S(�1) ⊂
S(�2) for �1 > �2.

In the case that the dynamics is continuous, the inner
product between the initial and evolved states is also con-
tinuous; therefore, if the state can reach the target angle �,
it can also reach all the target angles smaller than �. One
exception here is � = π . In some open systems, it is possible
that some Bloch vectors only change the length. In this case,
when the states evolve through the zero vector and then
change direction, it can still reach the angle π , yet the inner
production is not continuous during the evolution.

The time-independent Hamiltonian is one of the major
subjects in the study of the QSL. Here we provide an ex-
plicit expression of S for any dimensional time-independent
Hamiltonians under unitary evolution (the derivation is in
Appendix A).

Proposition 3. For a N-dimensional time-independent
Hamiltonian under unitary evolution, one expression of S in

FIG. 2. Schematic for the operational definition of the QSL. For
any state in S, there exists a subset of D (area within the solid black
line) including all the target states (states satisfying the target angle
�), and some of them (area within the dashed red line) are reachable
for a specific H . The minimum evolution time for all states in S to
reach the target states is the operational QSL τ .

the energy basis {|Ei〉} is

S =
{

�r |1 − cos � = 1

|�r|2
N−1∑
n=1

n−1∑
i=0

{1 − cos [(En − Ei )t]}

× (r2
n2+2i−1 + r2

n2+2i

)
, ∃t

}
, (8)

where Ei (with corresponding eigenstate |Ei〉) is the ith energy
eigenvalue (we assume Ei � Ej for i � j) and ri is the ith
entry of �r.

With the assistance of S , now we are in a position to
introduce the operational definition of the QSL.

Definition 1. The QSL τ is defined as the minimum evolu-
tion time to fulfill � for any �r ∈ S , i.e.,

τ := min
�r∈S

t

subject to θ (t, �r) = �. (9)

This operational definition requires two steps to measure
the QSL: (1) find the regime of the set S and (2) find the
minimum evolution time to reach the target angle for states
in S , as shown in Fig. 2. This definition makes the QSL
measurable in physics. For a specific quantum system, we can
first find the regime of S either theoretically or experimentally,
then experimentally prepare enough initial states in S and
measure the corresponding evolution time to reach the target
angle. At last, the minimum time of them is just the QSL
we seek. This definition has two obvious advantages: (i) it is
guaranteed to be attainable by the definition and (ii) it is state
independent, which means it only reflects the fundamental
property of the Hamiltonian structure and decoherence.

Another benefit with the assistance of S is that we can now
define a finite guaranteed time to reach the target angle as the
maximum time in S .
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Definition 2. The guaranteed time to reach the target angle
� is defined as

ζ := max
�r∈S

t

subject to θ (t, �r) = �. (10)

It is impossible to define a finite guaranteed time without
S in general since the time for the states out of S to reach
� is actually infinite. In the following we will discuss it
in various scenarios, including time-independent and time-
dependent Hamiltonians and open systems.

III. TIME-INDEPENDENT HAMILTONIANS

The first scenario we consider is time-independent Hamil-
tonians, for which we have the following theorem.

Theorem 1. For a general multilevel system with a time-
independent Hamiltonian H , the operational definition of the
QSL is

τ = �

Emax − E0
, (11)

where Emax and E0 are the highest and lowest energies with
respect to H . This QSL τ can be attained by the states

ρopt =
∑

i

1

N
|Ei〉〈Ei|+ ξ |E0〉〈Emax|+ ξ ∗|Emax〉〈E0| (12)

with the complex coefficient ξ satisfying |ξ | ∈ (0, 1/N]. The
proof of this theorem based on Proposition 3 is given in
Appendix B. For other states in S that are not in the form
of Eq. (12), τ is a lower bound of the corresponding evolution
time to reach the target angle. In the following we give several
remarks on this theorem.

Remark 1. The attainable states are mixed states for N �
3. They can only be pure in two-level systems by choosing
|ξ | = 1/2, which is the reason why the bounds attainable for
pure states, like MT and ML bounds, can only be saturated in
two-level systems [11].

Remark 2. It does not require a zero ground-state energy to
be attainable. In the case of two-level systems, the only case in
which τMT and τML are attainable, if the ground-state energy
is set to be zero then τ = min τMT = min τML for � = π (i.e.,
the orthogonal states as the target).

Remark 3. This bound can also be obtained by the bound
τB = �/Q [Q is given in Eq. (3)] [13] with a proper choice of
SU(N ) generators and the optimization over S . The discussion
is in Appendix B.

A corollary on the guaranteed time ζ can be immediately
obtained for periodic evolutions.

Corollary 1. For time-independent Hamiltonians, the guar-
anteed time for a periodic evolution with period T is

ζ = T − τ. (13)

Defining S (km) (m < k < N) as a subset of S given in
Proposition 3, and if all the legitimate states in S (km) satisfying
r2

n2+2i−1 + r2
n2+2i are nonzero for i = m, n = k and zero for

other subscripts, we have the following corollary.

Corollary 2. For all legitimate states in S (km), the minimum
time τkm to reach target angle can be expressed by

τkm = �

Ek − Em
. (14)

Due to Remark 2, that τ does not require a vanish-
ing ground-state energy, many intriguing phenomena of the
ground state can be exhibited in τ , such as the quantum phase
transition [51]. Here we use the one-dimensional transverse
Ising model as an example to show that the susceptibility of τ

with respect to the external field can be used as an indicator
for the quantum phase transition. The Hamiltonian of the
model is

H = −J

(
M∑

i=1

σ x
i σ x

i+1 + h
M∑

i=1

σ z
i

)
, (15)

where σ x
i (σ z

i ) is the the Pauli X (Z ) matrix for the ith
spin, J is the interaction strength, and h = B/J with B
the strength of the external field. M is the spin number.
Taking into account the periodic boundary condition, the
Hamiltonian above can be analytically solved as H/J =
2
∑

k ωkc†
kck −∑k ωk , where ωk = √

1 − 2h cos k + h2, and
ck (c†

k ) is a fermionic annihilation (creation) operator. k =
2πn/M with n = 0,±1, . . . ,± 1

2 (M − 1) for odd M and n =
± 1

2 ,± 3
2 , . . . ,± 1

2 (M − 1) for even M. The ground-state en-
ergy is E0/J = −∑k ωk and the highest energy is Emax/J =∑

k ωk . At the thermodynamic limit (details in Appendix C),
the QSL reads

τ = πsgn(1 + h)�/J

4M(h + 1)E
(

4h
(h+1)2

) , (16)

where sgn(·) is the sign function and E (·) is the complete
elliptic function of the second kind. Furthermore, the suscep-
tibility of τ with respect to h is

δτ

δh
= sgn(h + 1)π�/J

8Mh(h + 1)2E2
(

4h
(h+1)2

)[(h + 1)E

(
4h

(h + 1)2

)

+ (h − 1)K

(
4h

(h + 1)2

)]
, (17)

where K (·) is the complete elliptic function of the first kind.
The QSL and its susceptibility with respect to h are shown

in Fig. 3, in which the largest τ is always obtained at h = 0.
More importantly, δτ/δh is not smooth at h = ±1, which is
due to the well-known fact that h = ±1 are the critical points.
Thus, the susceptibility of the QSL is an observable to detect
the phase transition. The corresponding scheme is to prepare
the system in the state ρopt and then measure the change of the
evolution time when the target angle is reached. This scheme
is robust to the dephasing noise during the state preparation
because τ can be attained by any reasonable nonzero value
of η.

Two-level systems are the earliest systems in the study
of the QSL and also the only case in which τC and τF are
attainable. For two-level systems, any state can be expressed
via the Bloch vector

�r(η, α, ϕ) = η(sin α cos ϕ, sin α sin ϕ, cos α), (18)
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FIG. 3. The QSL τ (dashed blue line) and its derivative with
respect to h (solid red line) as functions of h in the one-dimensional
transverse Ising model. J is set to be 1 in the plot. The target
� = π/2.

where η ∈ [0, 1], α ∈ [0, π ], and ϕ ∈ [0, 2π ]. Since the uni-
tary evolution of a two-level system is periodic, S is equiva-
lent to D in this case according to Proposition 1. Furthermore,
we have the following corollary.

Corollary 3. For a two-dimensional time-independent
Hamiltonian under unitary evolution, the set S (D) in the
Bloch representation is{

�r(η, α, ϕ)|η ∈ (0, 1], α∈
[

�

2
, π − �

2

]
, ϕ∈ [0, 2π ]

}
.

(19)
Let E0 and E1 be the ground and excited energies of the
Hamiltonian, then the operational definition of the QSL is

τ = �

E1 − E0
. (20)

A thorough discussion of this case from a geometric per-
spective in the Bloch sphere is in Appendix D. In the Bloch
sphere (with |E1〉 the north pole), S is the light gray area in
Fig. 4(a). All states in the Bloch sphere apart from the double
cone with the apex angle � belong to S . It can be seen that
the volume of S shrinks with the increase of �, which can
be explained via Proposition 2. Physically, most states in S
here have two states on the dynamical trajectory satisfying the
target angle � 	= π and one for � = π .

In regard to the QSL, τ can be attained by any state in
the xy plane apart from the original point. A major difference
between τ in Eq. (20) and τC and τF is that τ is attainable
for both pure and mixed states. Figure 4(d) compares τ (solid
black line), τC (dash-dotted red line), and τF (dashed blue line)
as a function of |�r| for the states in the xy plane (in which they
are all irrelevant to ϕ). It shows τ is always the tightest bound
for any value of |�r| since it is always attainable in this plane.
When |�r| = 1, both τC and τF coincide with τ , confirming the
fact that they are only attainable for pure states in this case.
Meanwhile, since the dynamics in this case is periodic with
the period 2π

E1−E0
, the guaranteed time then reads

ζ = 2π − �

E1 − E0
(21)

according to Corollary 1.

FIG. 4. The set S(D) for a two-level system in the Bloch sphere
from (a) front view, (b) top view, and (c) oblique view. The light gray
area is S(D). The states in the blue cones cannot fulfill the target
angle �. (d) Comparison among τ (solid black line), τF (dashed blue
line), and τC (dash-dotted red line) for the initial states in the xy plane.
The target angle � = π/2.

IV. TIME-DEPENDENT HAMILTONIANS

Finding the QSL for time-dependent Hamiltonians is al-
ways a core task in the studies of this field. In the pre-
vious researches, most theoretical tools for time-dependent
Hamiltonians are formal inequalities with respect to time
and the bounds contain an average process over time, which
make them time dependent. This is not reasonable as already
discussed in the introduction. Here we will show that the
operational definition of the QSL does not have such problems
and can reveal the true physics behind the QSL. We take the
Landau-Zener model as an example, of which the Hamiltonian
is

H = �σx + vtσz, (22)

where � and v are time-independent parameters. In the fol-
lowing we take the eigenstate of the positive eigenvalue of
σz as the north pole of the Bloch sphere. In the case that
� = 0, S is also in the form of Eq. (19) since the dynamics is
still the rotation around the z axis, which is also numerically
confirmed in Fig. 5(a.0).

For a nonvanishing �, the analytical expression of S is
hard to obtain, therefore we provide the numerical results
in Figs. 5(b) and 5(c) for � = 1.0 and 2.0, respectively.
Figures 5(b.0) and 5(c.0) show the distributions of S in Bloch
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Δ = 0

Δ = 1

Δ = 2

FIG. 5. (a–c) The set S for (a) � = 0, (b) � = 1.0, and (c) � = 2.0 in the Landau-Zener model. (a.0), (b.0), and (c.0) show the distributions
of S in Bloch spheres. (a.1), (b.1), and (c.1) show the distributions of S as a function of α and ϕ. The white (and gray) and blue areas are the
regimes that the target angle � = π/2 can and cannot fulfill, respectively. v is set to be 1 in the plots. (d) The QSL τ as a function of � for
v = 1 (solid blue line), v = 2 (dashed red line), and v = 4 (dash-dotted black line) in the Landau-Zener model. The green dots represent the
analytical solution of τ for large �. The target in the plot is � = π/2. (e) Comparison between τ and τB for different values of �. The dashed
blue and dotted black lines represent τ and τB for � = 0 and the dash-dotted green and solid red lines represent τ and τB for � = 1. v is set to
be 1. The target angle � = π/2.

spheres. For the sake of a better presentation, we replot S as
a function of α and ϕ, defined in Eq. (18), in Figs. 5(a.1),
5(b.1), and 5(c.1). The distribution of S is not affected by η

since the dynamics is unitary. The gray areas in Bloch spheres
and white areas in α-ϕ plots represent the regimes of S and
the blue areas are the set of states that cannot reach the target
angle (S̄). The target angle � = π/2 and v = 1 in all plots.
One may notice that S̄ is central symmetric about the original
point, which is due to the fact that the dynamical trajectories
of a pair of central symmetric initial states are also central
symmetric (graphically shown in Appendix E). The area of
S̄ shrinks with the increase of �, indicating that a larger �

allows more states to reach the target angle in this case.
In the case of � = 0, the operational definition of the

QSL can be analytically obtained (details in Appendix E) as
follows:

τ =
√

�

v
, (23)

which is only the function of Hamiltonian parameters v and
the target angle, rather than the function of time. This re-
sult confirms our argument that the QSL for time-dependent
Hamiltonians should not be a function of time. τ can be
attained by any state in the xy plane apart from the original
point. Furthermore, since the dynamics here is still periodic

with the period T = √
2π/v, the guaranteed time ζ is

ζ = 1√
v

(
√

2π −
√

�). (24)

The operational definition of the QSL for a nonvanishing �

is numerically calculated and shown in Fig. 5(d) as a function
of � for different values of v. One can see that τ always
decays with the increase of � and v. For a large �, τ is
independent of v, which is due to the fact that in this regime
�σx is the dominant term in the Hamiltonian and the QSL
reduces to �/(2�) [green dots in Fig. 5(d)] according to
Corollary 3.

In the meantime, τB in this case can be calculated as

τB = �

vt

√
|�r|2

|�r|2 − r2
z

, (25)

which is inverse propositional to the time t . rz is the third entry
of the Bloch vector. For the states in the xy plane where τ is
attainable, τB = �/(vt ) is still related to the time. Figure 5(e)
compares the performances of τ and τB for different values
of �. The dashed-blue and dash-dotted green lines represent
τ for � = 0 and 1, respectively. And the dotted black and
solid red lines represent τB for � = 0 and 1. The initial states
of τB are taken as those that can reach τ . The target angle
� = π/2 and v is set to be 1. From this figure, one can see
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that, after the time τ , τ is always tighter than τB since τ is
true and attainable. In the case of � = 0, the target angle �

cannot be fulfilled by the evolution time in the gray regimes
(I) and (II), which means the evolution time to reach � in
this regime is actually infinity in mathematics. Therefore, any
finite value can provide a mathematically correct bound in
this case, as given by τB and other bounds based on the
same philosophy [similar things happen in the regime (I) for
� = 1]. However, these bounds themselves cannot provide
this information and sometimes may mislead the true physics
behind the mathematics.

V. OPEN SYSTEMS

The QSL in open systems is intriguing yet more com-
plicated compared to the unitary evolution. Many works at-
tempted to provide attainable bounds for open systems. In
regard to the Bloch representation, Campaioli et al. [26] used
the distance between two Bloch vectors to derive a bound of
the QSL. Here we show the performance of the operational
definition of the QSL in open systems.

A large number of quantum dynamics of open systems is
governed by the following master equation:

∂tρ(t )=−i[H, ρ]+
∑

i

γi

[
Liρ(t )L†

i − 1

2
{L†

i Li, ρ(t )}
]
, (26)

where Li is the ith Lindblad operator depicting a certain decay
mode. For a time-independent Hamiltonian under Markovian
dynamics, i.e., γi is time independent for any subscript i, the
dynamics of the corresponding Bloch vector is an affine map:

�r(t ) = eM
Tt (�r − �l ) + �l, (27)

where M and �l are real and the specific expressions are given
in Appendix F. For this dynamics, the set S is of the form

S =
{

�r | cos � = �r TeM
Tt (�r − �l ) + �r T�l∣∣eMTt (�r − �l ) + �l ∣∣|�r| , ∃t

}
. (28)

The first example we consider is the following master
equation:

∂tρ = −i[H, ρ] + γ+
[
σ+ρσ− − 1

2 {σ−σ+, ρ}]
+γ−
[
σ−ρσ+ − 1

2 {σ+σ−, ρ}], (29)

where the Hamiltonian H = 1
2ω0σz with σx,y,z a Pauli matrix,

and σ± = 1
2 (σx ± iσy). This model can depict some important

physical processes like the spontaneous emission (γ+ = 0)
and finite-temperature thermodynamics. Our first concern in
open systems is how S is affected by the decoherence. For the
dynamics governed by Eq. (29), S is of the form{

�r(η, α, ϕ)| cos � = sin2 α cos (ω0t ) + χ cos α√
sin2 α + χ2

, ∃t

}
, (30)

where χ = e− 1
2 γf t cos α + 2γd

ηγf
sinh ( 1

2γft ) with γf = γ+ + γ−
and γd = γ+ − γ−. The details of the calculation are given
in Appendix F. Notice that the constraint in Eq. (30) does
not involve ϕ, which means in the Bloch sphere S is axial
symmetric around the z axis.

FIG. 6. The set S and the evolution time to reach the target angle
as a function of α and η for (a) Markovian and (b) non-Markovian
dynamics in the case of spontaneous emission. The colored areas
represent S and the values are the corresponding minimum evolution
time to reach the target angle. The regime between the dashed black
lines is S for unitary evolution. ω0 is set to be 1 and � = π/4 in all
plots.

In the case of spontaneous emission (γ+ = 0, γ− = γ ),
the distribution of S (colored area) and the corresponding
values of the minimum time to reach the target angle � are
given in Fig. 6(a) as a function of α and η. � = π/4 and
γ = 0.1 in this plot. The area between the dotted black lines
is S under unitary evolution. It can be seen that the area of
S changes under the spontaneous emission. Affected by this
decoherence, some states with large α and small η cannot
reach the target angle anymore. However, the beneficial part
is that the states with small α can reach the target angle now.

A more interesting phenomenon here is that the minimum
evolution time reduces with the decrease of η, which indicates
that a lousy purity may speed up the evolution to reach the
target angle. To clarify the behavior of the QSL with small
η, we calculated corresponding τ analytically. For an acute
target angle, the operational definition of the QSL in this case
approximates to

τ ≈ δη

γ
sin �, (31)

where δη is a small purity. The details of the calculation are
in Appendix F. τ in the above equation can be attained by the
states with α = π

2 − �. In the studies of quantum informa-
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tion, purity is always treated as a resource for many quantum
information processings, and the decoherence jeopardizes the
purity and is harmful for those processings. However, here
our calculation shows that with respect to the QSL the states
with a lousy purity may provide a shorter evolution time
for the fulfillment of an acute target angle, which is very
counterintuitive and has not been discovered by other tools to
the best of our knowledge. In this case, the increase of strength
may slightly reduce the size of S yet significantly enhances
the reduction of τ .

The behaviors of the QSL with non-Markovian dynamics
have drawn some attention in recent years [21,22,52,53].
The model of spontaneous emission can also reveal the non-
Markovian dynamics of damped Jaynes-Cummings models,
in which γ = γ (t ) is a time-dependent decay rate. In 2013,
Deffner and Lutz [21] provided a very useful formula of
the QSL for purely initial states, and discussed the corre-
sponding behavior in this case. Here we also use it to show
the performance of the operational definition of the QSL
for non-Markovian dynamics. The only difference between
non-Markovian and Markovian dynamics in this model is
that the decay rate γ = γ (t ) is time dependent. For the non-
Markovian dynamics, S reads⎧⎨
⎩�r|cos �= sin2 α cos

[
1
2 Im(�) + ω0t

]+ χ1 cos α√
sin2 α + f 2

1

⎫⎬
⎭, (32)

where � = ∫ t
0 γ (t1)dt1 and χ1 = e− 1

2 Re(�) cos α −
2
η

sinh [ 1
2 Re(�)]. Re(·) and Im(·) represent the real and

imaginary parts. Figure 6(b) shows the distribution of S of
this non-Markovian dynamics. Compared to the Markovian
dynamics, the area of S shrinks and a state with α > 3π/4
can barely reach the target angle. For the states with a small
α and large η, the minimum times to reach the target angle
significantly reduce, which means non-Markovian dynamics
can speed up the evolution to reach the target angle for this
parameter regime. A similar phenomenon that poor purity
may benefit the QSL is also observed here. Utilizing the
similar calculation procedure (details in Appendix F) in
Markovian dynamics, τ satisfies the following equation:(

1 − λ

d

)
e− 1

2 (d+λ)τ +
(

1 + λ

d

)
e

1
2 (d−λ)τ = 2e− 1

8 δη sin �, (33)

which is also attained by the states with α = π
2 − �. In this

equation, τ monotonically reduces with the decrease of δη,
which means a small purity can indeed speed up the evolution
to reach the target angle in this non-Markovian dynamics.

Another example is the parallel dephasing

∂tρ = −i[H, ρ] + γ

2
(σzρσz − ρ), (34)

where H is the same as that in the spontaneous emission.
Dephasing is the dominant decay mode for some physical pro-
cesses like the recently discovered collective phonons bundle
emission [54]. In this dynamics, S can be expressed by{

�r(η, α, ϕ)|cos �= 1−[1−e−γ t cos(ω0t )]sin2 α√
1 − (1 − e−2γ t ) sin2 α

, ∃t

}
. (35)

FIG. 7. S and the minimum evolution time to reach the target
angle as a function of α and decay rate γ for � = π/4 in the case
of dephasing. The colored areas represent S and the values are the
corresponding minimum evolution time to reach the target angle. ω0

is set to be 1.

The details of the calculation are in Appendix F. Here only α

affects the distribution of S , which means S always consists of
two cones similar to the unitary evolutions. For example, the
distribution of S for � = π/4 is given in Fig. 7 as a function
of α and γ , which shows that in this case the growth of the
decay rate will make S shrink, and the boundary of α moves
towards π/2. In the case of � = π/2, S reduces to

{�r(η, α, ϕ)|η ∈ (0, 1], α ∈ [αc, π − αc], ϕ ∈ [0, 2π ]}, (36)

where the boundary αc = arcsin ( 1√
1+e−γπ/ω0

). In the case � =
π , S consists of all states in the xy plane apart from the
original point. It is easy to see that S is not affected by
the dephasing in this case. For a reasonable value of γ , the
operational definition of the QSL for Eq. (34) reads τ =
�/ω0, which can be attained by all states with α = π/2 and
η 	= 0. This result coincides with the unitary counterpart when
ω0 represents the energy difference between the excited and
ground states, indicating that τ is not affected by the parallel
dephasing for a not extremely strong decay rate.

VI. SUMMARY

In conclusion, we have introduced an operational ap-
proach to the notion of QSLs, which is state independent
and guaranteed to be attainable. With this approach, we
also define the guaranteed time for the fulfillment of the
target angle. The performances of this operational definition
τ have been thoroughly investigated in several scenarios. For
time-independent Hamiltonians under unitary evolutions, τ

is inverse proportional to the difference between the highest
and lowest energies. One advantage of this result is that its
attainability does not require a zero ground-state energy. The
ground-state energy contains fruitful phenomena in quan-
tum physics like the quantum phase transition. Therefore,
the susceptibility of τ can be used as an indicator of the
quantum phase transition, which is demonstrated with the
one-dimensional transverse Ising model in the paper.
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For the time-dependent Hamiltonians, the existing bounds
of the QSL are basically all related to the time, which is
not reasonable in physics. We use the Landau-Zener model
as an example to show the true physics behind the QSL.
The analytical expression of τ is given for � = 0. With the
increase of �, the value of τ approaches �/(2�), which
is exactly the QSL for the time-independent term in the
Hamiltonian. The results in this case vividly clarify the fact
that the QSL for noncontrolled time-dependent Hamiltonians
should be irrelevant to the evolution time.

The case of open systems is another important scenario
for the research of the QSL. The numerical and analytical
calculations of τ in the case of spontaneous emission show
a very interesting and counterintuitive phenomenon that a
lousy purity can benefit the reduction of the QSL, which,
to the best of our knowledge, has not been discovered with
the existing tools. Furthermore, this phenomenon occurs in
both Markovian and non-Markovian dynamics; however, the
specific relations between τ and the purity are not exactly the
same.

Different from conventional concerns about the QSL that
focus on valid mathematical tools, our operational approach
emphasizes the physics behind the QSL, which may pro-
vide the community another perspective for the study of fast
dynamical behaviors in quantum mechanics in the future.
Moreover, the phenomena discovered here would encourage
experimenters to verify with many quantum systems. Finally,
our approach should find broad applications in quantum tech-
nologies, such as quantum control and parameter estimation
in quantum metrology, and it should carry over to arbitrary
settings, including classical dynamics and stochastic thermo-
dynamics.
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APPENDIX A: THE SET S FOR TIME-INDEPENDENT
HAMILTONIANS

It is known that a N-dimensional density matrix can be
expressed via the Bloch vector as below:

ρ = 1

N

(
1 +
√

N (N − 1)

2
�r · �λ
)

, (A1)

where 1 is the identity matrix, �r is the Bloch vector satisfying
|�r| � 1, and �λ is the vector of SU(N ) generators. For the

unitary evolution, the evolved state ρ(t ) is

ρ(t ) = e−iHtρeiHt

= 1

N

(
1 +
√

N (N − 1)

2
�r · e−iHt �λeiHt

)
. (A2)

Based on the property of SU(N ) algebra, the unitary evo-
lution of any SU(N ) generator can be expressed as the linear
combination of all generators, i.e., e−iHtλieiHt =∑ j Ci j (t )λ j ,

which means �r · e−iHt �λeiHt =∑i j riCi j (t )λ j . This equation
immediately leads to

�r(t ) = CT(t )�r, (A3)

which is known as an unital affine map. Ci j (t ) can be further
solved as

Ci j (t ) = 1
2 Tr(e−iHtλie

iHtλ j ), (A4)

where the equation Tr(λiλ j ) = 2δi j has been used. In the
energy basis, Ci j (t ) reduces to

Ci j (t ) = 1

2

∑
mk

ei(Em−Ek )t [λi]
∗
mk[λ j]mk (A5)

with [λ j]mk the mkth entry of λ j in the energy basis. Ei is the
ith energy eigenvalue. In the following we use the specific en-
ergy basis {|E0〉, |E1〉, . . . , |EN−1〉}, where we set E0 < E1 <

. . . < EN−1. In this basis with an appropriate representation of
SU(N ) generators, the matrix C(t ) can be always expressed by

C(t ) =
N−1⊕
n=1

V (n, t ), (A6)

where V (n, t ) = [
⊕n−1

i=0 M(En − Ei, t )] ⊕ 1 with

M(x, t ) =
(

cos(xt ) − sin(xt )
sin(xt ) cos(xt )

)
. (A7)

For example, for a two-level system, using the Pauli matrices
as the generators, C(t ) reads

C(t ) =
(

M(E1 − E0, t ) 0
0 1

)
. (A8)

For three-level systems, using the Gell-Mann matrices as the
generators, C(t ) is of the form⎛
⎜⎜⎜⎝

M(E1 − E0, t ) 0 0 0 0
0 1 0 0 0
0 0 M(E2 − E0, t ) 0 0
0 0 0 M(E2 − E1, t ) 0
0 0 0 0 1

⎞
⎟⎟⎟⎠.

The specific form of SU(4) generators with respect to
Eq. (A6) is

λ0 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, λ1 =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

λ2 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, λ3 =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠,

(A9)
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and

λ4 =

⎛
⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎠, λ5 =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠,

λ6 =

⎛
⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎠, λ7 = 1√

3

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎠,

(A10)

and

λ8 =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠, λ9 =

⎛
⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎠,

λ10 =

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎠, λ11 =

⎛
⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎠,

(A11)

and

λ12 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, λ13 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠,

(A12)

and λ14 = 1√
6
diag(1, 1, 1,−3). For higher dimension, the

generators can be constructed similarly.
The period T of the evolution is determined by the period

of C(t ), which requires that all the energy gaps are commensu-
rable with each other. For the case that Ei+1 − Ei is a constant
d for any i, the period of C(t ) is T = 2π/d .

Recalling that �r(t ) = CT(t )�r, the angle between the initial
and evolved Bloch vectors is

cos θ = �r(t ) · �r
|�r|2 = �rTC(t )�r

|�r|2 . (A13)

The set S can then be written as

S =
{
�r | cos � = �rTC(t )�r

|�r|2 , ∃t

}
. (A14)

Utilizing Eq. (A6), Eq. (A13) can be rewritten as

cos θ = 1 − 1

|�r|2
N−1∑
n=1

n−1∑
i=0

{1 − cos[(En − Ei )t]}

× (r2
n2+2i−1 + r2

n2+2i

)
, (A15)

where ri is the ith element of �r, which directly gives

S =
{

�r |1 − cos � = 1

|�r|2
N−1∑
n=1

n−1∑
i=0

{1 − cos[(En − Ei )t]}

× (r2
n2+2i−1 + r2

n2+2i

)
, ∃t

}
. (A16)

This is a general expression of S for time-independent Hamil-
tonians under unitary evolution.

APPENDIX B: QSL FOR TIME-INDEPENDENT
HAMILTONIANS UNDER UNITARY EVOLUTION

1. Proof with the assistance of S
The calculation is to utilize the set S , in which all states

satisfy the equation

1 − cos � = 1

|�r|2
N−1∑
n=1

n−1∑
i=0

{1 − cos[(En − Ei )t]}

× (r2
n2+2i−1 + r2

n2+2i

)
. (B1)

According to the definition, the operational definition of the
QSL is the minimum time satisfying this equation. Now define

f (t ) := 1

|�r|2
N−1∑
n=1

n−1∑
i=0

{1 − cos[(En − Ei )t]}

× (r2
n2+2i−1 + rn2+2i

)
. (B2)

Its derivative on t is

∂ f

∂t
= 1

|�r|2
N−1∑
n=1

n−1∑
i=0

(En − Ei ) sin[(En − Ei )t]

× (r2
n2+2i−1 + rn2+2i

)
. (B3)

The proof contains two steps.
(1) We first prove that f (τ ) is in the first monotonic

increasing regime of f (t ). To do that, we need to prove
∂ f
∂t |t=τ � 0. The fact that

(En − Ei )τ = En − Ei

EN−1 − E0
� � � � π (B4)

means the sine term in Eq. (B3) is non-negative; at the same
time, En − Ei is also non-negative; thus, one can immediately
obtain ∂ f

∂t |t=τ � 0. The same result can be obtained for any
time t � τ , indicating that f (t ) is a monotonic increasing
function in the regime [0, τ ].

(2) Next we compare the values of f (τ ) and 1 − cos �.
Due to the equation 1 − cos [(En − Ei )τ ] � 1 − cos �, one
can have

N−1∑
n=1

n−1∑
i=0

{1 − cos[(En − Ei )τ ]} r2
n2+2i−1 + rn2+2i

|�r|2

� (1 − cos �)
N−1∑
n=1

n−1∑
i=0

r2
n2+2i−1 + rn2+2i

|�r|2

� (1 − cos �), (B5)

which leads to

f (τ ) � 1 − cos �. (B6)

In the case that the first crossover point between f (t )
and 1 − cos � is in the first monotonic increasing regime, as
shown in Fig. 8(a), t � τ because f (τ ) � 1 − cos �. In the
case that the first crossover point is not in the first monotonic
increasing regime, as shown in Fig. 8(b), t is also always
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f(t)

f(t) = 1 − cos Θ

f(τ)

tτ · · ·

f(t)

f(t) = 1 − cos Θ

f(τ)

tτ · · ·

FIG. 8. Schematic of f (t ) as a function of t . The red line repre-
sents the value 1 − cos �. The crossover points between two lines
are the times at which the states reach the target angle.

larger than τ since τ is always in the first monotonic regime.
The result t � τ is then proved. �

The set S is worth studying. Denote S (km) as a subset
of S in which all states satisfy r2

n2+2i−1 + r2
n2+2i 	= 0 for n =

k and i = m and r2
n2+2i−1 + r2

n2+2i = 0 for all the other sub-
scripts. For the set S (km), the solution of τ satisfying Eq. (B1)
is t = �

Ek−Em
. Next, consider another set S (km,lh) ⊂ S (km) ⊂ S ,

in which all states satisfy r2
n2+2i−1 + r2

n2+2i 	= 0 for both n =
k, i = m and n = l, i = h and zero for all other subscripts. It
is obvious that S (km,lh) ⊂ S (lh). Utilizing the same strategy
as we used above, it can be proved that the time given by
S (km,lh) is larger than min{ �

Ek−Em
, �

El −Eh
}. In this way, one

can conclude that the time given by S (km,lh,··· ) is bounded by
min{ �

Ek−Em
, �

El −Eh
, · · · }.

The states that can attain τ need to satisfy r2
N2−2N +

r2
N2−2N+1 	= 0, which is

N−1∑
i=0

1

N
|Ei〉〈Ei| + ξ |E0〉〈Emax| + ξ ∗|Emax〉〈E0|, (B7)

where ξ =
√

N−1
2N (rN2−2N − irN2−2N+1). The specific matrix

formula in the energy basis {|Em〉} is⎛
⎜⎜⎜⎜⎜⎜⎝

1
N 0 · · · 0 ξ

0 1
N 0 · · · 0

... 0
. . . 0

...

0 · · · 0 1
N 0

ξ ∗ 0 · · · 0 1
N

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B8)

To be a positive semidefinite matrix, ξ should satisfy |ξ | ∈
(0, 1/N].

2. Proof from the optimization of τB

The target angle for the QSL is defined in various ways.
With respect to the Bloch vector, an elegant theoretical tool
was provided by Campaioli et al. [13], which is a state-
dependent bound with the expression

τB = �

Q
, (B9)

where

Q = 1

t

∫ t

0
dt ′
√

2Tr
(
ρ2

t ′H2 − ρt ′Hρt ′H
)

Tr
(
ρ2

t ′
)− 1/N

. (B10)

In the energy eigenspace {|Em〉}, one can see that

Tr
(
ρ2

t ′H2
)

= 1

N2

∑
n

E2
n + N − 1

2N

∑
i jn

ri(t
′)r j (t

′)E2
n 〈En|λiλ j |En〉

+ 2

N2

√
N (N − 1)

2

∑
in

ri(t
′)E2

n 〈En|λi|En〉. (B11)

Inserting 1 =∑m |Em〉〈Em| in the equation above, we obtain

Tr
(
ρ2

t ′H2
)

= 1

N2

∑
n

E2
n + 2

N2

√
N (N − 1)

2

∑
in

ri(t
′)E2

n 〈En|λi|En〉

+ N − 1

2N

∑
i jmn

ri(t
′)r j (t

′)E2
n 〈En|λi|Em〉〈Em|λ j |En〉.

Next, since

Tr(ρt ′Hρt ′H )

= 1

N2

∑
n

E2
n + 2

N

√
N (N − 1)

2N

∑
i,n

ri(t
′)E2

n 〈En|λi|En〉

+ N − 1

2N

∑
i jmn

ri(t
′)r j (t

′)EnEm〈En|λi|Em〉〈Em|λ j |En〉,

one can have

2N

N − 1
Tr
(
ρ2

t ′H2 − ρt ′Hρt ′H
)

=
∑
i jnm

ri(t
′)r j (t

′)En(En − Em)〈En|λi|Em〉〈Em|λ j |En〉

= 1

2

∑
i jnm

ri(t
′)r j (t

′)(En − Em)2〈En|λi|Em〉〈Em|λ j |En〉

= 1

2

∑
i jnm

ri(t
′)r j (t

′)(En−Em)2Re(〈En|λi|Em〉〈Em|λ j |En〉).
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In the meantime, Tr(ρ2) − 1
N = N−1

N |�r|2. Q can then be finally
obtained as

Q = 1

t

∫ t

0
dt ′
√√√√∑

i jnm

ri(t ′)r j (t ′)
2|�r|2 (En − Em)2

×√Re(〈En|λi|Em〉〈Em|λ j |En〉). (B12)

For three-level systems, we chose Gell-Mann matrices as the
SU(3) generators. The nonzero terms in the summation in the
above equation are those with i = j. Through some algebra,
the term in the square root can be expressed by

1

|�r|2
{[

r2
0 (t ′) + r2

1 (t ′)
]
(E1 − E0)2 + [r2

3 (t ′) + r2
4 (t ′)
]

× (E2 − E0)2 + [r2
5 (t ′) + r2

6 (t ′)
]
(E2 − E1)2

}
. (B13)

The maximum Q can then be obtained when r2
3 (t ′) + r2

4 (t ′) =
|�r|2, which gives Qmax = E2 − E0, and τB reduces to τ .

APPENDIX C: ONE-DIMENSIONAL
TRANSVERSE ISING MODEL

Explicit expressions can be derived in the continuum by
replacing the discrete sum over the set of quasimomenta by
an integral, i.e.,

∑
k → M

2π

∫
dk. The ground-state energy then

reads

E0 = M

2π

∫
ωkdk = −sgn(h + 1)

2M(h + 1)

π
E

(
4h

(h + 1)2

)
,

(C1)

where E (x) denotes the complete elliptic integral of the sec-
ond kind. Similarly, it is found that

δτ = δhsgn(h + 1)π�/J

8Mh(h + 1)2E2
(

4h
(h+1)2

)

×
[

(h + 1)E

(
4h

(h + 1)2

)
+ (h − 1)K

(
4h

(h + 1)2

)]
,

where K (x) denotes the complete elliptic integral of the first
kind. Note that δτ ∝ M−1. In particular, in the neighborhood
of the critical point h = 1,

δτ ≈ πδh�/J

32M

[
5 − 3h − (h − 1) log

(
h − 1

8

)]
. (C2)

APPENDIX D: QSL IN TWO-LEVEL SYSTEMS

In this Appendix we analyze two-level systems. The
Hamiltonian of a two-level system in the energy basis is H =
E0|E0〉〈E0| + E1|E1〉〈E1|, where E0 and E1 are the energies
and |E0〉 and |E1〉 are corresponding eigenstates. Define σz as
σz := |E1〉〈E1| − |E0〉〈E0|, namely, the Pauli matrix in basis
{|E0〉, |E1〉}. With the Pauli matrix, the Hamiltonian can be
rewritten as H = 1

2 (E0 + E1)1 + 1
2 (E1 − E0)σz. The identity

matrix 1 commutes with any operator, hence it has nothing to
do with the evolution. Then the Hamiltonian can be simplified
into 1

2 (E1 − E0)σz. In the Bloch representation, this means
the evolution of any state is the rotation of the corresponding

Bloch vector about the z axis. A general vector in the Bloch
sphere can be expressed by

�r(η, α, ϕ) = η(sin α cos ϕ, sin α sin ϕ, cos α), (D1)

where η ∈ [0, 1], α ∈ [0, π ] and ϕ ∈ [0, 2π ]. For an initial
state �r(η0, α0, ϕ0), the evolved state is

�r(t ) = η(sin α cos ϕ cos(ωt ) − sin α sin ϕ sin(ωt ),

sin α cos ϕ sin(ωt ) + sin α sin ϕ cos(ωt ), cos α).

It can be seen in this equation that the period of the dynamics
is

T = 2π

ω
= 2π

E1 − E0
. (D2)

For two-level systems, utilizing Eq. (D1), the constraint in S
given in Proposition 3 reduces to

sin2

(
�

2

)
= sin2

(
ωt

2

)
sin2 α. (D3)

The state with α = 0 does not evolve in this case, hence not
in the set S . For α 	= 0, the condition for α to make sure the
equation above has solutions for t is

sin2

(
�

2

)
� sin2 α, (D4)

which is equivalent to

α ∈
[
�

2
, π − �

2

]
. (D5)

Furthermore, the minimum time under constraint (D3) is
reached when α is maximum, i.e., α = π/2, which leads to

τ = �

ω
= �

E1 − E0
. (D6)

Corollary 3 is proved. �
To better understand the physics behind the QSL, we ana-

lyze the two-level systems from a fully geometric perspective.
For any specific initial state �r(η, α, ϕ), the set of all states on
the evolution trajectory (denoted by E) is

E = {�r(η, α, ϕ)|ϕ ∈ [0, 2π ]}. (D7)

One may notice that the set of all target states for a specific
initial state (denoted by T ) here is a cone with the initial state
as the axis and � the central angle. For any state �r(η, α, ϕ),
the condition of �r ∈ S is that E and T have intersections.

In the case that α = �/2, E = T = {�r(η, �
2 , ϕ)|ϕ ∈

[0, 2π ]} for any specific η, as shown in the yellow cone
in Fig. 9(a). The coincidence between E and T means that
all the states with η 	= 0 in E are in the set S , i.e., S1 =
{�r(η, �

2 , ϕ)|η ∈ (0, 1], ϕ ∈ [0, 2π ]} ∈ S . Furthermore, it is
easy to see that for any specific state in this case only one
target state exists, i.e., the symmetrical state with respect to
the initial state about the z axis. It requires half of the period
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α

|r| sinα

|r| sin Θ
2

α =
Θ
2

xy

|r| sin α

E

T

1
2
β

FIG. 9. Schematic of three scenarios for the calculation of the
operational definition of the QSL in a qubit system. (a) The case
α � �/2 (α is the angle between the initial state and the z axis).
When α < �/2, there exists no target state fulfilling the angle �.
When α = �/2, only one target state exists. (b) The case α > �/2.
For this case, two target states exist. (c) is the projection of initial and
target states on the xy plane.

to rotate the initial state to its symmetrical state; thus, the
evolution time in this scenario is

t = π

ω
= π

E1 − E0
. (D8)

Next, for the case that α < �/2, all states within E [the
blue cone in Fig. 9(a)] fail to reach the target � since the
largest angle between the initial state and the evolved state is
2α, which is smaller than �. This means any state satisfying
α < �/2 is not in the set S .

For the case that 2α > �, E [the blue cone in Fig. 9(b)]
for any value of η shares two vectors with T [the purple
cone in Fig. 9(b)], which means any state in this scenario
has two target states �rtar1 and �rtar2 on the evolution trajectory.
Thus, S2 = {�r(η, α, ϕ)|η ∈ (0, 1], α > �

2 , ϕ ∈ [0, 2π ]} ∈ S .
Since the rotation is counterclockwise (looking against the
z axis), the evolution time to �rtar1 is smaller than the one to
�rtar2. To calculate this evolution time, the angle between the
projections of �r = �r(η, α, ϕ) and �rtar1 on the xy plane (denoted
as β) needs to be known. From Fig. 9(c), it can be found that
the length of the projection of �r is |�r| sin α, and the length
between these two projections is 2|�r| sin ( �

2 ). Thus, the angle

β = 2 arcsin (
sin ( �

2 )
sin α

), which indicates that the evolution time
is

t = 2π

E1 − E0

β

2π
= 2

E1 − E0
arcsin

(
sin
(

�
2

)
sin α

)
. (D9)

The minimum value of this evolution time is �
E1−E0

, which is
attained at α = π/2. Combing the result obtained in the case
of 2α = �, one can finally obtain t � �

E1−E0
, and the set S =

S1 ∪ S2. The case with π − α can be analyzed in the same
way.

APPENDIX E: THE OPERATIONAL DEFINITION OF THE
QSL IN THE LANDAU-ZENER MODEL

The Hamiltonian of Landau-Zener model is

H = �σx + vtσz, (E1)

where σz = |1〉〈1| − |0〉〈0| with |{|0〉, |1〉} the computational
basis. � and v are two time-independent parameters. For
the case that � = 0, |0〉 and |1〉 are the eigenstates of the
Hamiltonian. The evolution operator for this Hamiltonian can
then be calculated as

U = exp

(
− i

2
vt2σz

)
. (E2)

In the following we will use the traditional notations rx, ry, rz

as the entries of the Bloch vector instead of r0, r1, r2. With
the above unitary operator, the evolved Bloch vector can be
calculated as below:

rx(t ) = cos(vt2)rx − sin(vt2)ry, (E3)

ry(t ) = sin(vt2)rx + cos(vt2)ry, (E4)

rz(t ) = rz. (E5)

The angle between the initial and evolved states is then of the
form

cos θ = �r(t ) · �r
|�r|2 = cos(vt2)

(
r2

x + r2
y

)+ r2
z

|�r|2 , (E6)

where |�r| is the norm of �r. For the target angle �, the evolution
time needs to satisfy the equation

sin2

(
vt2

2

)
= |�r|2

|�r|2 − r2
z

sin2

(
�

2

)
. (E7)

In the figure of sin2 (vt2/2) as a function of t , due to the fact
that the first extremal value of sin2 (vt2/2) is 1, which is also
the global maximum value, the first crossover point between
it and the line |�r|2

|�r|2−r2
z

sin2 ( �
2 ) is always in the first monotonic

increasing regime, in which a smaller value of |�r|2
|�r|2−r2

z
sin2 ( �

2 )
gives a smaller value of t . Therefore, the minimum time
τ satisfying the equation above is attained when |�r|2

|�r|2−r2
z

is

minimum. Due to the fact that |�r|2
|�r|2−r2

z
� 1, τ is of the form

τ =
√

�

v
, (E8)

which is attained at rz = 0, i.e., any state in the xy plane.
The set S (in Fig. 5) for all values of � in the Landau-

Zener model is center symmetric about the original point; this
is due to the fact the trajectories of two center symmetric states
are also center symmetric, as shown in Fig. 10, which means
the evolution of the angles between the initial and evolved
states are the same for these two states. Therefore they can
both reach the target angle simultaneously, which is the reason
why S is also center symmetric.
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FIG. 10. Trajectories of center symmetric states (red dots) for
� = 1.0 (left) and � = 2.0 (right). The center symmetric states have
center symmetric trajectories, which is the reason for S to be center
symmetric.

Next we calculate the bound τB = �/Q [13], where

Q = 1

t

∫ t

0

√
2Tr[ρ(t ′)2H2 − ρ(t ′)Hρ(t ′)H]

Tr[ρ(t ′)2] − 1/2
dt ′. (E9)

Since Tr[ρ(t ′)2H2] = 1
2 (�2 + v2t ′2)(1 + |�r|2), and

Tr[ρ(t ′)Hρ(t ′)H] = 1

2
�2
(
1 − |�r|2 + 2r2

x

)+ 2�vt ′rxrz

+ 1

2
v2t ′2(1 − |�r|2 + 2r2

z

)
, (E10)

then one can have

2Tr[ρ(t ′)2H2] − 2Tr[ρ(t ′)Hρ(t ′)H]

= 2(�2 + v2t ′2)|�r|2 − 2(�rx + vt ′rz )2. (E11)

In the meantime, Tr[ρ(t ′)2] − 1
2 = 1

2 |�r|2, which gives us the
final expression of Q in this case as

Q = 2

t

∫ t

0
dt ′
√

�2 + v2t ′2 − 1

|�r|2 (�rx + vt ′rz )2. (E12)

When � = 0, rz(t ′) = rz is a constant, and the equation above
reduces to

Q = vt

√
1 − r2

z

|�r|2 . (E13)

APPENDIX F: QSL IN OPEN SYSTEMS

1. S for the general master equation

For many quantum open systems, the dynamics is governed
by the following master equation:

∂tρ = −i[H, ρ] +
∑

i

γi

[
LiρL†

i − 1

2
{L†

i Li, ρ}
]
, (F1)

where ρ is a N-dimensional density matrix, and Li is the ith
Lindblad operator depicting a certain decay mode. Now we
calculate the set S for this dynamics. Substituting the Bloch

representation of ρ into the equation above, one can obtain

∑
k

(∂t rk )λk = −i
∑

k

rk[H, λk] +
∑

i

γi

√
2

N (N − 1)
[Li, L†

i ]

+
∑

i

γi

∑
k

rk

(
LiλkL†

i − 1

2
{L†

i Li, λk}
)

.

(F2)

Recall that the SU(N ) generators satisfy

[λk, λl ] = 2i
∑

m

εklmλm, (F3)

{λk, λl} = 4

N
δkl1 + 2

∑
m

μklmλm, (F4)

where εklm and μklm are some constants. Substituting λl into
both sides of the equation above and taking the trace, one can
finally obtain the following equation:

∂t �r = MT�r + �q, (F5)

which is an affine map with the entries of the coefficients

Mkl =
∑

i

γi

2

[
Tr(LiλkL†

i λl ) −
∑

m

μklmTr(L†
i Liλm)

]

+
∑

m

εklmTr(Hλm) − 1

N

∑
i

γiδklTr(L†
i Li ), (F6)

and

ql =
∑

i

γi√
2N (N − 1)

Tr([Li, L†
i ]λl ). (F7)

In the case that Li can be decomposed with the generators, i.e.,
Li = ei,id1 +∑k ei,kλk , the coefficients can be rewritten as

Mkl =
∑

m

εklm

[
Tr(Hλm) + 2

∑
i

γiIm(ei,ide∗
i,m)

]

+ 2

N

∑
i

γi

(
ei,ke∗

i,l − δkl

∑
k′

|ei,k′ |2
)

+
∑

ik′mm′
γiei,k′e∗

i,m′ [(iεk′km + μk′km)(iεmm′l +μmm′l )

−μklm(iεmm′k′ + μmm′k′ )], (F8)

and

ql =
∑
ikk′

4γiIm(e∗
i,kei,k′ )εkk′l√

2N (N − 1)
. (F9)

For example, the coefficients for N = 2 reduce to

Mkl =
∑

m

εklm

[
Tr(Hλm) + 2

∑
i

γiIm(ei,ide∗
i,m)

]

+ 2
∑

i

γi

[
Re(ei,ke∗

i,l ) − δkl

∑
k′

|ei,k′ |2
]
, (F10)

and ql =∑ikk′ 2γiIm(e∗
i,kei,k′ )εkk′l .
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In the case that M and �q are time independent, the solution
of Eq. (F5) is

�r(t ) = eM
Tt (�r − �l ) + �l, (F11)

where �l satisfies MT�l = −�q. The inner product between �r(t )
and �r then reads

�r(t ) · �r = �r TeM
Tt (�r − �l ) + �r T�l. (F12)

Therefore, the general expression of S for the above-
mentioned master equation is

S =
{

�r | cos � = �r TeM
Tt (�r − �l ) + �r T�l

|eMTt (�r − �l ) + �l ||�r|
, ∃t

}
. (F13)

2. Spontaneous emission

a. Calculation of S
Here we show the analysis of the QSL for the dynamics

∂tρ = −i[H, ρ] + γ+

[
σ+ρσ− − 1

2
{σ−σ+, ρ}

]

+ γ−

[
σ−ρσ+ − 1

2
{σ+σ−, ρ}

]
, (F14)

where σ± = (σx ± iσy)/2 and H = ω0σz/2. In the Bloch rep-
resentation, M reads

M =
⎛
⎝− 1

2 (γ+ + γ−) ω0 0

−ω0 − 1
2 (γ+ + γ−) 0

0 0 −(γ+ + γ−)

⎞
⎠,

and �q = (0, 0, γ+ − γ−)T. Then the solution is

rx(t ) = e− 1
2 (γ++γ− )t [cos(ω0t )rx(0) − sin(ω0t )ry(0)],

ry(t ) = e− 1
2 (γ++γ− )t [cos(ω0t )ry(0) + sin(ω0t )rx(0)],

rz(t ) = γ+−γ−
γ++γ−

[1−e−(γ++γ− )t ]+ e−(γ++γ− )t rz(0). (F15)

Rewriting the initial state as

�r(0) = η(sin α cos ϕ, sin α sin ϕ, cos α), (F16)

the solutions reduce to

rx(t ) = ηe−(γ++γ− )t/2 sin α cos(ω0t + ϕ),

ry(t ) = ηe−(γ++γ− )t/2 sin α sin(ω0t + ϕ), (F17)

rz(t ) = ηe−(γ++γ− )t cos α + γ+ − γ−
γ+ + γ−

[1 − e−(γ++γ− )t ].

The purity is of the form

|�r(t )|2 =
{

γ+ − γ−
γ+ + γ−

[1 − e−(γ++γ− )t ] + ηe−(γ++γ− )t cos α

}2

+ η2e−(γ++γ− )t sin2 α. (F18)

In the mean time, the inner product between the initial and
evolved states is

�r(0) · �r(t ) = η2e−(γ++γ− )t cos2 α+ η2e− 1
2 (γ++γ− )t sin2 αcos(ω0t )

+ η
γ+ − γ−
γ+ + γ−

[1 − e−(γ++γ− )t ] cos α. (F19)

Hence, S in this case can be expressed by

S =
{
�r(η, α)| cos � = sin2 α cos(ω0t ) + cos αχ√

sin2 α + χ2
, ∃t

}
,

(F20)

in which

χ = e− 1
2 γf t cos α + 2γd

ηγf
sinh

(
1

2
γft

)
(F21)

with γf = γ+ + γ− and γd = γ+ − γ−.

b. Markovian dynamics

Now we consider the case γ+ = 0 and γ− = γ , which
represents the dynamics of the spontaneous emission. In this
case, χ reduces to

χ = e− 1
2 γ t cos α − 2

η
sinh

(
1

2
γ t

)
. (F22)

Now we assume η is very small (in the following we will use
δη instead) and the time to reach the target angle could also
be very small. For a very small γ t , χ approximates to

χ ≈ cos α − γ t

δη
, (F23)

with which the constraint in Eq. (F20) reduces to

cos � =
1 − γ t

δη
cos α√

1 − 2γ t
δη

cos α + γ 2t2

(δη)2

=
1 − γ t

δη
cos α√(

1 − γ t
δη

cos α
)2 + γ 2t2

(δη)2 sin2 α

. (F24)

Considering the case that � ∈ (0, π/2), the equation above is
equivalent to

cot � =
1 − γ t

δη
cos α

γ t
δη

sin α
, (F25)

which can be rewritten as

sin α cot � + cos α = δη

γ t
. (F26)

For a fixed δη, the minimum time can be obtained when
the left-hand term is maximum. Using the derivative of the
left-hand term with respect to α cos α cot � − sin α, one can
immediately find out that the maximum value is obtained
when cot � = tan α, i.e.,

α = π

2
− �. (F27)

With this optimal initial state, τ reads

τ = δη

γ
sin �. (F28)

A remarkable fact here is that τ is propositional to δη, which
means mixed initial states can provide a smaller τ than pure
states.
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c. Non-Markovian dynamics

This model (γ+ = 0, γ− = γ ) can also reveal the non-
Markovian dynamics of damped Jaynes-Cummings models,
in which γ = γ (t ) is a time-dependent decay rate. Utilizing
an effective Lorentzian spectral density

J (ω) = 1

2π

γ0λ

(ω0 − ω)2 + λ2
, (F29)

where λ is the spectral width and γ0 is the coupling strength.
γ (t ) can be analytically obtained as [21]

γ (t ) = 8γ0λ sinh
(

1
2 dt
)

d cosh
(

1
2 dt
)+ λ sinh

(
1
2 dt
) , (F30)

where d =
√

λ2 − 2γ0λ. In this case, the entries of the Bloch
vector read

rx(t ) = ηe− 1
2 Re(�) sin α cos

(
1

2
Im(�) + ω0t + ϕ

)
,

ry(t ) = ηe− 1
2 Re(�) sin α sin

(
1

2
Im(�) + ω0t + ϕ

)
,

rz(t ) = η cos αe−Re(�) − (1 − e−Re(�) ),

where � = ∫ t
0 γ (t ′)dt ′ and Re(·) and Im(·) are the real and

imaginary parts. With these expressions, the norm square of �r
can be calculated as

|�r(t )|2 = η2e−Re(�) sin2 α + [(1 + η cos α)e− Re(�) − 1]2.

(F31)

In the mean time,

�r · �r(t ) = η2e− 1
2 Re(�)

{
sin2 α cos

(
1

2
Im(�) + ω0t

)

+ cos α

[
e− 1

2 Re(�) cos α − 2

η
sinh

(
1

2
Re(�)

)]}
,

which directly gives the set S as

S =
⎧⎨
⎩�r | cos � = sin2 α cos

[
1
2 Im(�) + ω0t

]+ cos αχ1√
sin2 α + χ2

1

⎫⎬
⎭,

(F32)

where

χ1 = e− 1
2 Re(�) cos α − 2

η
sinh

[
1

2
Re(�)

]
. (F33)

The numerical calculation suggests that, similar to the
Markovian dynamics, a lousy purity in this case can also
benefit the reduction of τ . Since τ is very small here, � would
also be very small in the case that γ0 is not too large. In this
case, χ1 approximates to χ1 ≈ cos α − Re(�)

δη
, which makes

cos � =
1 − Re(�)

δη
cos α√(

1 − Re(�)
δη

cos α
)2 + Re2(�)

(δη)2 sin2 α

. (F34)

We also consider the case that � ∈ (0, π/2); the equation
above equals to

cot � =
1 − Re(�)

δη
cos α

Re(�)
δη

sin α
, (F35)

which can be rewritten as

sin α cot � + cos α = δη

Re(�)
. (F36)

For a fixed δη, the minimum time can be obtained when
the left-hand term is maximum, which is the same as the
Markovian case, i.e., α = π

2 − �. With this optimal initial
state, we have Re(�) = δη sin �. Recalling the definition of
�, one can obtain∫ τ

0

8γ0λ sinh
(

1
2 dt ′)

d cosh
(

1
2 dt ′)+ λ sinh

(
1
2 dt ′)dt ′ = δη sin �, (F37)

which can be further solved as(
1 − λ

d

)
e− 1

2 (d+λ)τ +
(

1 + λ

d

)
e

1
2 (d−λ)τ = 2e− 1

8 δη sin �.

(F38)

3. Parallel dephasing

Now we consider the dephasing model, in which the dy-
namics can be written as

∂tρ = −i

[
1

2
ω0σz, ρ

]
+ γ

2
(σzρσz − ρ). (F39)

In this case M reads

M =
⎛
⎝−2γ ω0 0

−ω0 −2γ 0
0 0 0

⎞
⎠, (F40)

and �q is a zero vector. Then the dynamics of the Bloch vector
reads

rx(t ) = e−γ t [cos(ω0t )rx(0) − sin(ω0t )ry(0)],

ry(t ) = e−γ t [cos(ω0t )ry(0) + sin(ω0t )rx(0)], (F41)

rz(t ) = rz(0).

Rewriting the initial state as Eq. (F16), the solutions reduce to

rx(t ) = ηe−γ t sin α cos(ω0t + ϕ),

ry(t ) = ηe−γ t sin α sin(ω0t + ϕ), (F42)

rz(t ) = η cos α.

Since the purity Tr(ρ2) = η2(e−2γ t sin2 α + cos2 α), the
inner product between the initial and evolved states is

�r(0) · �r(t ) = η2[e−γ t cos(ω0t ) sin2 α + cos2 α]. (F43)

Hence, S is of the form

S =
{

�r(α)| cos �= 1 − [1 − e−γ t cos(ω0t )] sin2 α√
1 − (1 − e−2γ t ) sin2 α

, ∃t

}
.

(F44)
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To provide the regime of α in S , we need to solve sin2 α in
the constraint condition in Eq. (F44). Rewrite it as

x2
1y2 + (cos2 �x2 − 2x1)y + sin2 � = 0, (F45)

where y = sin2 α, x1 = 1 − e−γ t cos(ω0t ) and x2 = 1 −
e−2γ t . The general solution for the equation above is

y± = 1

x1
− cos2 �

x2

2x2
1

± cos �

2x2
1

√
cos2 �x2

2 + 4x2
1 − 4x1x2.

To know if the expression of y± is exactly equivalent to
Eq. (F44) [since Eq. (F45) may bring extra solutions], the sign
of

1 − x1y± = cos �

2x1
(cos �x2 ∓

√
cos2 �x2

2 + 4x2
1 − 4x1x2)

needs to be checked to see if it coincides with cos �. In
the case that cos � � 0, 1 − x1y− is always positive and
1 − x1y+ is only positive when cos(ω0t ) > e−γ t , which means
Eq. (F44) for cos � � 0 is actually equivalent to

sin2 α =
{

y−, for cos(ω0t ) � e−γ t ,

y±, for cos(ω0t ) > e−γ t .
(F46)

Using a similar analysis, one can see that for cos � < 0
Eq. (F44) is equivalent to

sin2 α = y− (F47)

when cos(ω0t ) � e−γ t and no solution exists for other values
of t .

Now we discuss the existence of solutions for t using
Eqs. (F46) and (F47) instead of Eq. (F44). The solutions for t
exist only when y± is real and within the regime (0,1] for some
values of t . The requirement for real solutions is x2

2 cos2 � −
4x1x2 + 4x2

1 > 0, which cannot always be satisfied for any
value of t . When t → 0, x2

2 cos2 � − 4x1x2 + 4x2
1 reduces

to 4γ 2t2(cos2 � − 1) < 0, indicating that no state can fulfill
the target angle in an extremely small time. Furthermore,
when t → ∞, x2

2 cos2 � − 4x1x2 + 4x2
1 reduces to cos2 � >

0. Therefore, the solution of time must be larger than the time
(tc) that first let x2

2 cos2 � − 4x1x2 + 4x2
1 be zero. Around the

time tc, y± reduces to

y± = 1

x1(tc)

(
1− x2(tc)

2x1(tc)
cos2 �

)
≈ 2

x2(tc)
− 1

x1(tc)
. (F48)

For a not very large γ , tc always satisfies cos(ω0tc) < e−γ tc ,
which immediately gives x1(tc) > x2(tc); then one can see that

y± � 1

x2(tc)
� 1. (F49)

Furthermore, in the same regime that cos(ω0t ) � e−γ t can be
satisfied, x1(t ) > x2(t ) always holds, which gives

y− � 1

x1
− cos2 �

x2

x2
1

(F50)

for cos � � 0 and y− � 1/x1 for cos � < 0. These two lower
bounds can be both lower than 1 for a proper time. Hence, the
value of y− in this regime will continuously reduce to some
value smaller than 1 from the time tc, which means the first
cross point between y− and the regime (0,1] has to be at 1,
which corresponds to the shortest time solution for Eqs. (F46)
and (F47). At this point, the constraint in Eq. (F44) reduces to
cos � = cos(ω0t ), which immediately gives the QSL as

τ = �

ω0
. (F51)

For example, in the case that � = π/2, the constraint in
Eq. (F46) reduces to

sin2 α = 1

1 − e−γ t cos(ω0t )
. (F52)

For a not very large γ , the smallest value of the right-hand side
expression is [1 + exp(−γπ/ω0)]−1, which can be reached at
t = π/ω0. And it is obvious that its value can be larger than 1;
therefore, the regime of sin2 α in which the above equation has
solutions for t is sin2 α ∈ [(1 + e− γπ

ω0 )−1, 1], which directly
leads to the regime of α in S as

α ∈
⎡
⎣arcsin

⎛
⎝ 1√

1 + e− γπ

ω0

⎞
⎠, π − arcsin

⎛
⎝ 1√

1 + e− γπ

ω0

⎞
⎠
⎤
⎦,

and the QSL is τ = π/(2ω0).
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