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Abstract: Mach-Zehnder interferometer is a common device in quantum phase estimation and
the photon losses in it are an important issue for achieving a high phase accuracy. Here we
thoroughly discuss the precision limit of the phase in the Mach-Zehnder interferometer with
a coherent state and a superposition of coherent states as input states. By providing a general
analytical expression of quantum Fisher information, the phase-matching condition and optimal
initial parity are given. Especially, in the photon loss scenario, the sensitivity behaviors are
analyzed and specific strategies are provided to restore the phase accuracies for symmetric and
asymmetric losses.
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1. Introduction

Quantum metrology, an emerging quantum technology, has been widely studied [1-13] and applied
in various sciencfic tasks in recent years, including the detection of gravitational wave [14-16],
quantum imaging [17-20] and even biology science [21]. Quantum phase estimation via
interferometers is an important topic in quantum metrology. A successful example of phase
estimation with interferometers is the Laser Interferometer Gravitational-Wave Observatory
(LIGO), which has already catch the signal of gravitational waves [22] in 2015. Another two
on-going projects LISA [23] and TianQin [24] are also based on the orbital optical interferometers.
Hence, the study of optical phase estimation, especially quantum phase estimation, will definitely
promote the technological development in these fields, and may even breed the next-generation
detectors for gravitational waves and dark matters.

A su(2) interferometer can be constructed via a Mach-Zehnder interferometer, which typically
consists of two beam splitters and one phase shift in one arm, as shown in Fig. 1. Since Caves found
the effects of vacuum fluctuation to the phase accuracy in Mach-Zehnder interferometers [25],
various types of input states have been discussed, including squeezed state [25-28], NOON
state [29-31], entangled coherent state [32-38], BAT state [39], and number squeezed state [40].

A powerful theoretical tool in quantum parameter estimation to depict the precision limit is the
quantum Cramér-Rao bound, which is §¢ > 1/+/uF [41-44]. Here 54 is the standard deviation
of parameter ¢ with unbiased estimator ¢, u is the repeated number of experiments and F is the
quantum Fisher information (QFT). The most useful resource in the Mach-Zehnder interferometer
is the average photon numer i, of which the corresponding standard quantum limit for ¢ is
1/+7 and the Heisenberg limit (or Heisenberg scaling) is 1/7.

Noise is the major obstacle for obtaining high precision result in quantum parameter estimation.
For a large-scale, especially an in-orbit quantum interferometer (in the size of LISA and
TianQin), the photon losses between the satellites could be an important issue for a high phase
sensitivity. Therefore, fully understanding on the sensitivity behaviors under photon losses in
the interferometer could help to restore a high precision as required. Many lossy scenarios
with different input states have been discussed in the literature [32,33,45-48]. It is common to
simulate the photon losses with fictitious beam splitters in theory, as shown in Fig. 1. In this
paper, we discuss the precision limit of a Mach-Zehnder interferometer with a coherent state and
a superposition of coherent states as the input states. Both perfect and imperfect (with photon
losses) scenarios are considered and the analytical expression of QFI is provided. With this
expression, the phase-matching condition (PMC) of the input states and the optimal QFI are
calculated. For the imperfect scenario, symmetric and asymmetric losses are both studied and
corresponding strategies to restore the accuracy are provided.
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Fig. 1. Schematic of an Mach-Zehnder Interferometer. The input ports are labeled as A and
B. The photon losses in the 1nterferometer are simulated with two fictitious beam splitters,
with corresponding operators Bl ¢ and B}?D. Here C and D are fictitious ports and 77, T, are
transmission rates. No photon losses exist for T; = 7> = 1.

2. Preliminary knowledge

The quantum Fisher information (QFI) for a parameter ¢ is defined as F := Tr(p¢L2), where
pg is the parameterized state and L is the symmetric logarithmic derivative operator satisfying
Oppy = %(qu; + pgL). Several methods for the calculation of QFI have been developed in recent
years [49-55]. Utilizing the spectral decomposition pg = Z?;’ | Pilwi) i, with M, p; and |¢;)
the dimension of the support for the matrix, the eigenvalues and eigenstates of pg, the QFI can
be expressed by [49-51]:

F = Z ( ¢ppl + Z4pl (8¢'//z|t9¢¢’z> - Z ptp] |<l//1|(9¢l,0]>| @)
i,j=1 i

For the unitary parameterization process pg = e H¢ peH? with H a Hermitian operator, the
expression of the QFI reduces to

F= Z4pl<w,|H i) - Z p” P gl Hlu) P @)

ljll

Furthermore, for a pure state [), it reduces to

F =4 (Wl H2109) = [WolHIws)) 3)

In this paper, we focus on the phase estimation in the Mach-Zehnder interferometer, as
shown in Fig. 1. The interferometer consists of two beam splitters and a phase shift. The two
beam splitters are usually taken as 50:50 beam splitters, which in theory can be expressed by
By (+%) = exp (+iZJ2B). Here J2B isa Schwinger operator defined as JAB = 1(a’b+b'a) with
a (b) the annihilation operator for port A (B) and a (bT) the corresponding creation operators. The
other two Schwinger operators are J§ AB — =5 La"b—bta)and J: AB _ | (aTa — b'b). The Schwinger
operators satisfy the su(2) algebra. The operator for the phase shiftis U (¢) = exp (igpJB). For a
perfect Mach-Zehnder interferometer, one expression of the entire setup can be written as the
unitary operator below [56]

Uniz = Bo (<5 ) U@)B. (5 ) = exp (~ig72®) @
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The photon loss in the interferometer is usually depicted via fictitious beam splitters in theory.
The effect of a general beam splitter for ports X and Y in quantum optics can be written as
B)T(Y = exp (i2 arccos VT, J))C(Y) [47,48], where T is the transmission rate. When T = 1 (T = 0), all
photons are transmitted (reflected). In many scenarios, especially in the large-scale interferometers,
the optical path length is long and the dispersion of light spot is inevitable during the propagation,
which will cause photon losses at the second beam splitter. In this paper, ports A and B are input
ports of the interferometer and ports C and D are the fictitious ports for photon losses. The effects
of fictitious beam splitters are expressed by BX‘C and BI?D. The arm with respect to port A (B) has
no photon losses for 71 = 1 (7> = 1) and all photons are lost for 77 = 0 (7, = 0).

3. Perfect interferometer

For the perfect interferometer and with a pure input state, the QFI can be directly obtained by
substituting Eq. (4) into Eq. (3), which is

F = (2infig +ia +7i = 2[(@)2|(0) ) = 2Re (@) (") = (@(b")?),

where Re(-) represent the real part and iy = (a'a), ip = (b'b) are the average photon numbers
for both arms.

Taking a coherent state |3) as the input state for port A, and an arbitrary pure state |¢) for port
B, iia = |[(a)|? = |B]*. The QFI then reads

F = 2iin (it = D)2) + 7ia + 715 - 2Re [ 82 (677) - (1)?) | )
For a given |¢), F only depends on the value of 3, and the PMC optimizing the QFI is
v (52) - Arg (02 - @)% = =, ©)
where Arg(-) is the argument. With this condition, the optimal QFI can be calculated as
Fyp = 27ia (sz — B2 + [P - <b>2|) +iip + g %)

Next we take the input state in port B as the superposition of two coherent states |@) and | — @),
i.e.,

W) = Na(la) + €| - a)), ®)

where ® € [0,2n) is the relative phase and the normalization factor N, reads N, = (2 +

2e721aP cog ®)!'/2. In the following we denote 8 = |Ble!®A, a = |a|e!®®, with 5, Op the

arguments of 8 and @. Through some straightforward calculation, the PMC for optimal QFI can

be written as

n
|®a — Dp| = > ©)

which coincides with the case that using a coherent superposition state in port B [57], namely,
the relative phase ® doesn’t affect the PMC. Under this condition, the maximal QFI reads

Fm = iiaQlal? + 1) + fig(27ia + 1). (10)

Utilizing the equations 7is = |3|* and 7ig = 2N2|a|*(1 - e 2l cog ®), the maximal Fy, can be
reached when ® = 7, which means taking into account the PMC, the QFI can be further improved
with an initial odd parity of |¥).

Now we compare Fy, with Heisenberg scaling. Denote 77 = 714 + 7ig as the average total input
photon number, Eq. (10) can then be rewritten into Fy, = 71 + 2iis(7ig + |a|?). For a large ||,
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ig ~ |a|?, Fn = it + 4iipfig = it + > — (671)> with 67 = fip — i1 the photon difference between
two ports. When 67 is small (compared to #), Fy,, reduces to 71 + 72, i.e., Fy o« ii%, indicating the
QFI under PMC can reach the Heisenberg scaling even no initial parity exists in |¢ ). Furthermore,
it can be found that

Fn < (%), (11)

which can be proved as Fr, — (%) = —(|8|*~|a|*)? < 0. Here we used (A%) = i1 +2iiafig +ii+|a|*.
This upper bound can be achieved for |3| = |a|. To satisfy this condition, one can take
B = ae'®3) with ® the relative phase between the values of @ and 3, hence the total input state
is No|ae!® 7)), ® (Ja)g + €©| — a)p). According to Eq. (6), the PMC is @ = 0 or &, which is
indeed independent of ®.

4. Imperfect interferometer

For an imperfect Mach-Zehnder interferometer, the total effect cannot be treated as an unitary
operation. As discussed in the previous section, the photon losses are simulated with beam splitters
Bﬁ‘c = expl[i2 arccos VT1J2€] and B}?D = exp|i2 arccos VT2 JBP]. Here JAC = %(aTc +cta),
JBD = 1(b'd + d'b) with ¢ (") and d (d") the annihilation (creation) operators of the fictitious

lossy ports C and D. We take the total input state as
Nalae'®* ) (ja)s + | - a)s) (12)

After the photon losses, the state becomes a mixed state, which can be written as (the basis
information and detailed calculation can be found in the appendix)

1+p?+ 2e210P cos @ 1 =P% (p: + pre™™©) eilal?oT sin®

, (13)
—i|e|28T sin®

1 =N
S N1 =17 (pe+pre©)e 1-p?
where p; = e"“'zT, pr = e~laPR and T = T1 + T, is the total transmission rate of the photon
losses, R = 2 — T is the total reflection rate, 67 = T — T is the transmission difference between
the two ports. Since the last 50:50 beam splitter in the interferometer does not affect the value of
QFI as it is independent of 6, the total effect of the lossy interferometer is equivalent to perform
the phase shift transform U(6) to p;. Denote the eigenvalues and eigenstates of p; as 4. and [A..),
respectively, the QFI can be expressed by

i=+

8
AB\2 il AB 2
F= ) 4l (2P 140) - ]Z T AL (14)
Utilizing the expressions of A, and |A.) (given in the appendix) and through some tedious
calculation, the specific expression of QFI can be written as

N3|a|4p,
Al - p?)

NS
—16(6T)2K“|a|4(1 = p2ye el sin2 @ + 26T N2|a|?e 21" (4T N2|a|? - 1) sin © sin @

A
F = 2(5T)2 4p,(pr + pr cos O)(p; + pr cos ©) — pr}

A
+2T2%|a|* N2 [1 —2N2(1 = p?) - (W +2N2e el gin?2 @) sin® @ | + 2TN2|a|?. (15)

(o7

where A = 1 —4detp; = 1 -4N2(1 - p?)(1 - p?). Next we will discuss the PMCs and maximum
QFIs for symmetric and asymmetric losses scenarios.
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T

Fig. 2. The values of maxFy, as a function of 7" and |a|. The areas below the solid black

line, above the dashed black line and between these lines represent the regimes that
Nex < (2 +2¢7212%)=1 (optimal © is 0), Nex > (2 — 2¢~21@*)=1 (optimal @ is 7) and
Nex € [(2 + 2e‘2|“|2)‘1, 2- 2e‘2|"|2)‘1]. The PMC here is ® = 0, 7. m(ngm takes the

logarithmic values in the figure.

4.1. Symmetric losses

We first consider the symmetric losses case. In this case, the transmission rate in both arms are
equivalent, i.e., T = 0. With this condition, the QFI in Eq. (15) reduces to
A _alal? . .
F =2T%al*N2 |1 -2N2(1 - p?) - T 2N2e ol in? @) sin® ®| + 2TN2[a|*.  (16)

a

To maximize F, the corresponding PMC is @ = 0 or n, which is the same with lossless case.
Utilizing the PMC, F,, is in the form

Fn = 2TN2Ja? {1 + Tle [1 - 2N2(1 = p2)]} . (17

Recall the fact that N, is a function of ®, F, can be further improved by optimizing ®.

Utilizing the equation gf;g = 0, it can be found the extremal value of F}, is reached at
2
) 1 +Tle (18)
= IVex -—
¢ 4T|a2(1 - p})
2
and due to the fact gN—Fz“;z < 0, this extremal value is the maximum value. One may notice that

Ng is a bounded function with respect to ®,

s 1 1

N- e : s 19
C 201 4 e 2laly 2(1 — e2lal?) (19

where the lower and upper bounds of N2 can be attained at ® = 0 and 7, respectively. To obtain
the actual maximum value of Fy,, whether N locates in above regime needs to be considered.
The specific relation between Nk and above regime is shown in Fig. 2. The areas below the solid
black line and above the dashed black line represent the regimes that Nex < (2 + 2e‘2|"‘|2)‘1 and
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Nex > (2 - 2e‘2|"|2)‘1, respectively. The area between these lines represents the regime that
Nex € |2+ 2¢7210P)1 (2 — Ze_2|"|2)_1].

In the regime that Nex > (2 — 2e’2“"|2)’l . Ne is not attainable and the maximum value of Fy,
with respect to ® is obtained at ® = &, namely, an initial odd parity is required. In this case,

_ 2|a’R
1+ Tlal? (1 - 16_)] . (20)

1 — e 2lal

Tlal®

maxf, = ———
o M 1 e2leP

Similarly, in the regime that Nex < (2 + 2¢721¢1)=1 Ny is also not attainable and the maximum
value of Fy, with respect to ® is obtained at ® = 0, namely, an initial even parity is required for

optimal Fy,. In this case,
1-— e—2|(1\2R
2

Tla|?

maxFy, =
0 " | 4e2laP

In the regime that Nex € [(2 + 2¢~210)=1 (2 — 2¢72l@*)=1] N, is reachable and the maximum
F,, can be attained at Nf, = Ng. The maximum F, reads

L Tle?) ’
TE™ T (1 = e 2laPR)’ 22)
The optimal O satisfies the following equation
_ 2 —2|a*(1-T) 2 2|a)?
c0s© — 2T |a|*e + (T|a|* - 1e . 23)

1+T|al?

In this regime, the optimal O relies on the values of 7, || and both odd and even input states are
non-optimal.

From the lines shown in Fig. 2, it can be seen the area between the lines is small, which
means for most values of 7 and ||, N is out of the regime [(2 + 26‘2|"|2)_1, 2- 26‘2“”2)‘1 ,
and initial parity will benefit the precision limit. Besides, though the PMC here is not changed
compared to the lossless scenario, the maximum F,, with respect to ® is different for different
parameter regimes as discussed above. However, in all regimes, increasing the intensity of initial
state always benefits the precision limit, as shown in Fig. 2. Thus, for an intermediate photon loss
rate, the best strategy to hold the precision limit is to use a high intensity odd state as the input
state. However, for a low photon loss rate, one should be more careful since the increasing of the
intensity may requires a changed parity for optimal precision limit. And to keep the odd parity to
be optimal, a higher intensity is required with the decrease of the photon loss rate (the increase of
the transmission rate 7).

4.2. Asymmetric losses

For asymmetric losses scenario, 6T # 0. To find the PMC, the derivative of QFI on sin ® needs
to be calculated. Based on Eq. (15), it is

oF
0sin ®

= —26TN§|cx|Ze_2|“|2 sin@(1 — 4TN3|a|?) - 277 |a|* (A + 4Nie_4|"|2 sin’ ®) sin @.

(24)
Due to the fact (af;TF@z < 0, the solution for above equation gives the maximum value of QFI,
i.e., the optimal @ needs to satisfy

N2(4TN2|a|> - 1)sin®

sin® = N/, :=
T2|a|? (AeleP + 4Nje-2lal sin @)

ex

oT. (25)
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Fig. 3. The difference between Eq. (15) and T|a|? under the PMC ® = 0. The expression
T|a|? is a good approximation from |e| ~ 3 for the coefficients values in the figure. A larger
transmission rate 7" requires a larger || for this approximation.

The solution for this equation relies on the values of ®. However, similar to the symmetric
scenario, sin @ is restrained in the regime [—1, 1]. Hence, when N/, € [-1, 1], the PMC is the
solution for above equation, especially, if the input state is an even state, i.e., ® = 0, the PMC
then reads ® = 0. For case that N/, > 1, the PMC is ® = 7/2, and for N/, < —1, the PMC is
® =37/2.

For a low intensity input (|| is very small), N/, ~ % tan% — sin®oT.

4T |a|?”
the regime [—1, 1] highly relies on the value of ® and the sign of 67|", |indicating no constant
PMC exists. A more concerned case is with a high intensity input. In this case, Ni ~ 1/2 and
Ae2lal’ x 21aP(1-T) 4 L2lePP(1-R) Since | — T and 1 — R always take different signs as T + R = 2,
Ae2lal jg very large here. Thus, N/, approximates to zero. Based on Eq. (25), the PMC here is
® =~ 0 or n. Namely, for an asymmetric loss scenario with a high enough intensity input, the
PMC can still be independent of ® and the transmission rates. Another benefit of this PMC is that
Fy is insensitive to the sign of T (since it only exists together with sin @), i.e., the information
of which path has a more severe leak is not required here. Taking this PMC (® = 0, ), Fy,
approximates to

Its relation between

Fn ~ Tlal?, (26)

which is independent of ©. Figure 3 shows the difference between Eq. (15) and T|a|? for different
parameter settings. Generally, a larger transmission rate requires a larger || to converge to T|a/|%.
However, for the specific parameters given in the figure, all F;;, converge before around || = 3.0,
which means T|a|? is a very good approximation here for |a| > 3.0 regardless the values of T,
0T and @. Thus, for the asymmetric losses scenario, one efficient strategy to restore the precision
limit is inputting a high intensity state satisfying the PMC.

4.3. The scaling

The average total photon number 7 for the input state in Eq. (12) is

2]a)?
n= —m8 — 27
" 1+ e 22l cos® @7)

For alarge ||, i ~ 2|a|?. In the symmetric losses scenario, Egs. (20) and (21) indicate mngm 7]

for a nonzero R, which means it can only reach the standard quantum limit in these regime. For
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Eq. (22), mngm o« 712, i.e., it can still attain the Heisenberg scaling, however, the allowed value

of |a| in this regime (shown in Fig. 2) is very limited, and the absolute value of mélem is still
worse than Eq. (20) with a large |«@|. Therefore, the scaling of meFm for symmetric losses can

only provide a precision at the standard quantum limit. For asymmetric losses scenario, taking
into account the PMC, F,, approximates to T'|a|? for high intensity state, i.e., proportional to 7,
the standard quantum limit. This phenomenon coincides with some other cases that the precision
limit is bounded by the standard quantum limit when local noise exists [3,4,49, 58, 59].

5. Conclusion

This paper focuses on the phase estimation of a su(2) Mach-Zehnder interferometer, in which the
unknown parameter ¢ is encoded by a phase shift in one arm. The input states is a coherent state
|8) and a superposition state of coherent states N, (|a’) + €!®| — a)). Both perfect and imperfect
scenarios are considered. For the perfect scenario, the phase-matching condition to optimize the
QFT is given. With this condition, the QFI can be further improved by taking ® = r, i.e., using
an odd parity state (cat state). For the imperfect scenario, the photon losses in both arms are
simulated by two fictitious beam splitters. The general analytical expression of QFI are provided,
as well as the phase-matching condition and optimal ® to maximize QFI. In the symmetric losses
case, the phase-matching condition is unchanged compared to the lossless case. Furthermore,
there exists a small parameter regime for total transmission rate 7 and |«| that optimal @ is
sensitive to them. To avoid this regime, one strategy is using a high intensity input state, of which
the precision limit is at the standard quantum limit. However, it should be noticed that for a large
T, increasing the intensity may requires the change of parity from even to odd in the mean time,
and to keep the odd parity as the optimal one, a higher intensity is required with the decrease
of the photon loss rate (increase of 7). In the asymmetric losses case, taking the approximated
phase-matching condition, an efficient strategy to avoid the sensitivity of maximum QFI on ®
and restore the sensitivity is also using the a high intensity input state satisfying the PMC.

Appendix: Derivation of QFI for imperfect interferometer

The input state we choose in this paper is
Win) = e’ @) @ Na(la) + '] - a)). (28)

For the first 50:50 beam splitter, the state becomes [yo) = By () |¢in). Utilizing the formula

Bl a)alB)ar = |a«/T +ipV1 - T>A ‘,8\/7 +iaV1 - T>A,, (29)
where Bz = exp(i2 arccos TJ;\A/) and being aware of the fact T = 1/2 for 50:50 beam splitter,
|o) can be written as

W0 = No (Iifidal £ + €©1 =i fal = £ids) (30)

where f. = %(1 + ¢'?). Recall the fictitious beam splitters Bz‘c, B}?D as exp(i2 arccos VT J2C)

and exp(i2 arccos VT, JBP), where C, D are labels of two fictitious output ports with ¢ (¢) and d
(d") the annihilation (creation) operators and J2€ = 1(a’c + ac"), JBP = 1(b'd + bd"). Assume
the input states of the fictitious input ports are vacuum, and after the photon losses, the output
state |;) can be written as

01 = Na (1201 = fovRDClif-vRD + €®18) £V Rl —ifVRo)p), (B
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where |A) := |i fiVT)al f-NT2)s and |B) = | =i f-NT)Al = fiNT2)s. Ri = 1=Ti, Ry = 1 =Ty

are the reflection rates. The reduced matrix can then be calculated as

Trep(ly )Wl
N2 [IANAI +1 BB e 11T 00O 7 (] p, e OT -0 ) (7 | (32)

P1

where p, = e 1oPR with 6T = T\ — T, the transmission difference. Notice |A) and |B) are not
orthogonal due to the fact (A|B) = p,eil@loTsin® with p = ¢~1oT and T = T} + T the total
transmission rate.

Now we introduce an orthogonal basis {|A), | AL )}, where

1

NI

In this basis, p; can be written as

1+p? + 2¢7212l cos ® 1 -p%(p: + pre™™©) ¢!l 6T sind®

i PST si
e i|a|*S8T sin ®

|AL) = (1) - pretterorneyzy) (33)

p1 = N2 , (34

1= p? (p; + pre'®) 1-p?

The eigenvalues for this matrix are A, = Ni(l + \/Z) /2 and corresponding eigenstates |A.) are

+ —-i® . . —i|a|?8T sin®
1) = v, P T Pre LAy« =2 18), (35
\/p%+p%+2e‘2|‘l|zcos® \/l—ptz \J1-p?
where we have used the expression of | A ). The coefficients read
1 2+ e2aP cos ®
Ve = oy |lE — (36)
V2 VA(L + e7212P cos ©)
1 /A
= —/5 £ VANZ(p? + e2lel cos @), 37
«/z‘/ 5 & VAN (p} + e2lF cos ©) (37
A = 1-4detp;. (38)
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