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PAPER

Valid lower bound for all estimators in quantum parameter
estimation

Jing Liu andHaidongYuan
Department ofMechanical andAutomation Engineering, TheChineseUniversity ofHongKong, Shatin,HongKong, People’s Republic of
China

E-mail: hdyuan@mae.cuhk.edu.hk

Keywords: quantummetrology,mean square error, Cramér–Rao bound

Abstract
Thewidely used quantumCramér–Rao bound (QCRB) sets a lower bound for themean square error
of unbiased estimators in quantumparameter estimation, however, in generalQCRB is only tight in
the asymptotical limit.With a limited number ofmeasurements biased estimators can have a far better
performance for whichQCRB cannot calibrate.Here we introduce a valid lower bound for all
estimators, either biased or unbiased, which can serve as standard ofmerit for all quantumparameter
estimations.

1. Introduction

An important task in quantummetrology is tofind out the ultimate achievable precision limit and design
schemes to attain it. This turns out to be a hard task, and one often has to resort to various lower bounds to gauge
the performance of heuristic approaches, such as the quantumCramér–Rao bound [1–4], the quantum
Ziv–Zakai bound [5], quantummeasurement bounds [6] andWeiss–Weinstein family of error bounds [7].
Among these bounds the quantumCramér–Rao bound (QCRB) is themost widely used lower bound for
unbiased estimators [8–30]. However, with a limited number ofmeasurementsmany practical estimators are
usually biased. For example theminimummean square error (MMSE) estimator, which is given by the posterior

mean ò=x y p x y x xdˆ ( ) ( ∣ ) [34], is in general biased in the finite regime, here x denotes the parameter and

y denotesmeasurement results, the posterior probability distribution p x y( ∣ ) can be obtained by the Bayes’ rule
=

ò
p x y ,

p y x p x

p y x p x xd
( ∣ ) ( ∣ ) ( )

( ∣ ) ( )
with p x( ) as the prior distribution of x and r=p y x Tr Mx y( ∣ ) ( ) given by the Bornʼs

rule. TheMMSE estimator provides theminimummean square error

ò å= -
=

x p x x y x p y x xMSE d . 1
k

n

0

2( ˆ) ( ) ( ˆ ( ) ) ( ∣ ) ( )

The performance of this estimator, however, cannot be calibrated by quantumCramér–Rao bound in thefinite
regime as with limited number ofmeasurements it is usually biased. This is also the case formany other
estimators including the commonly usedmaximum likelihood estimator [27–30].

In this paperwe derive an optimal biased bound (OBB)which sets a valid lower bound for all estimators in
quantumparameter estimation, either biased or unbiased. This boundworks for arbitrary number of
measurements, thus can be used to gauge the performances of all estimators in quantumparameter estimation.
And the difference between this bound and the quantumCramér–Rao bound also provides away to gaugewhen
quantumCramér–Rao bound can be safely used, i.e., it provides away to gauge the number ofmeasurements
needed for entering the asymptotical regime that the quantumCramér–Rao boundworks. The classical optimal
biased bound has been used in classical signal processing [35, 36].
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2.Main result

Based on different assumptions there exists different ways of deriving lower bounds, for example someBayesian
quantumCramér–Rao bounds, which are based on a quantum type of VanTree inequality, have been obtained
[31–33]. These bounds require the differentiability of the prior distribution at the boundary of the support
region, thusmay not apply, for example, to the uniformprior distribution. The optimal biased bound does not
require the differentiability of the prior distribution at the boundary, thus can be appliedmore broadly. For the
completeness, wewillfirst follow the treatment ofHelstrom [1] to derive a lower bound for estimators with a
fixed bias, fromwhichwe then derive a valid lower bound for all estimators by optimizing the bias.

We consider the general case of estimating a function f x( ) for the interested parameter xwith a given prior
distribution. Tomake any estimation, one needs tofirst perform somemeasurements on the state rx, which are
generally described by a set of PositiveOperator ValuedMeasurements (POVM), denoted as Py{ }. The
measurements have probabilistic outcomes ywith probability r= Pp y x Tr y x( ∣ ) ( ). An estimator f yˆ ( ), based

on themeasurement results y, has amean ò r= P = +E f y x f y y f x b xTr d ,x y( ˆ ( )∣ ) ˆ ( ) ( ) ( ) ( ) where b x( )
represents the bias of the estimation. This equation can bewritten in another form

ò r- P =f y E x yTr d 0. 2x y( ˆ ( ) ( )) ( ) ( )

wherewe use E x( ) as a short notation for E f y x( ˆ ( )∣ )which equals to +f x b x( ) ( ) and only depends on x.
Assuming the prior distribution is given by p x( ), themean square error is then in the form

ò ò òr d= - P = +f x p x f y f x y p x f b x xMSE d Tr d d , 3x y
2 2 2( ˆ) ( )[ ˆ ( ) ( )] ( ) ( )[ ˆ ( )] ( )

where òd r= - Pf f y E x yTr dx y
2 2ˆ ( ˆ ( ) ( )) ( ) is the variance of f yˆ ( ).

Differentiating equation (2)with respect to x and use the fact that ò r¢ P = ¢E x y E xTr dx y( ) ( ) ( ), with
/¢ ¶ ¶E x E x( ) ≔ we get

⎛
⎝⎜

⎞
⎠⎟ò

r
-

¶
¶

P = ¢f y E x
x

y E xTr d . 4x
y( ˆ ( ) ( )) ( ) ( )

Nowmultiply p x( ) at both sides of equation (4) and substitute the following equation into it
r

r r
¶
¶

= +
x

L L
1

2
, 5x

x x( ) ( )

here L is known as the symmetric logarithmic derivative of rx which is the solution to equation (5).We then
obtain

ò r- P = ¢p x f y E x L y E x p xRe Tr d , 6x y( )( ˆ ( ) ( )) ( ) ( ) ( ) ( )

where Re(·) represents the real part.Multiply both sides againwith a real function z x( ) then integrate with
respect to x,

ò ò òr- P = ¢x p x f y E x z x L y p x E x z x xRe d Tr d d . 7x y( )( ˆ ( ) ( )) ( ( ) ) ( ) ( ) ( ) ( )

Nowwe denote r= - PA p x f y E x x y( ) ( ˆ ( ) ( )) and r= PB p x z x Lx y( ) ( ) , then the left side of above

equation can be rewritten as ò òx A B yRe d Tr d( )† . Therefore, equation (7)nowhas the form

ò ò ò= ¢x A B y p x E x z x xRe d Tr d d . 8( ) ( ) ( ) ( ) ( )†

Using Schwarz inequality we have

ò ò ò ò ò ò
ò òd r=

x A B y x A A y x B B y

p x f x p x z x J x

Re d Tr d d Tr d d Tr d

d d ,x

2

2 2

( )( )( ) ( ) ( )

( ) ˆ ( ) ( ) ( )

† † †

2
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the last equality we used the fact that

ò ò ò ò

ò

r

d

= - P

=

x A A y x p x f y E x y

p x f x

d Tr d d Tr d

d , 9

x y
2

2

( ) ( )( ˆ ( ) ( )) ( )

( ) ˆ ( )

†

and

ò ò ò
ò

r

r

=

=

x B B y p x z x L x

p x z x J x

d Tr d Tr d

d . 10

x

x

2 2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†

Here r r=J LTrx x
2( ) ( ) is the quantumFisher information [1, 2]. Based on above equations, we can obtain

ò
ò
ò

d
r

¢
p x f x

p x E x z x x

p x z x J x
d

d

d
, 11

x

2
2

2
( ) ˆ ∣ ( ) ( ) ( ) ∣

( ) ( ) ( )
( )

which is valid for any z x( ) that satisfies the inequality ò r >p x z x J xd 0x
2( ) ( ) ( ) . Assuming rJ x( ) is complete

positive, i.e., r >J 0x( ) , let r= ¢z x E x J x( ) ( ) ( )we obtain

ò ò òd
r r

¢
=

¢ + ¢
p x f x p x

E x

J
x p x

f x b x

J
xd d d . 12

x x

2 2 2

( ) ˆ ( ) ( )
( )

( ) [ ( ) ( )]
( )

( )

From equation (3)we then get the lower bound for themean square error

⎧⎨⎩
⎫⎬⎭ ò r

¢ + ¢
+f p x

f x b x

J
b x xMSE d . 13

x

2
2( ˆ) ( ) [ ( ) ( )]

( )
( ) ( )

When =b x 0( ) , i.e., for unbiased estimators the bound reduces to a BayesianCramér–Rao bound [31] (another
BayesianQCRBusing a left logarithmic derivative is in [32]). Furthermore, if =f x x( ) , the bound reduces to
thewell-usedCramér–Rao form [3]. If we only consider =f x x( ) and take the prior distribution as a uniform
one, above bound can be treated as the quantum version of the biasedCramér–Rao bound [1]. The bound given
in equation (13) vividly displays the tradeoff between the variance and the bias of the estimate: at one extreme by
letting =b x 0( ) the unbiased estimatesminimize the term b x2 ( ), while thefirst term isfixed; at the other
extreme by letting = -b x f x( ) ( )we canminimize the thefirst term, but nowwith afixed bias =b x f x2 2( ) ( ).
The actualminimumof this bound lies somewhere between these two extremes, which provides a lower bound
for all estimators.

To obtain a valid lower bound for all estimators we use the variational principle tofind the optimal b x( ) that
minimizes the bound in equation (13)which follows the treatment in Ref. [36]. Suppose the support of the prior
distribution p x( ) is in a a,1 2( ), i.e., =p x 0( ) for any x outside a a,1 2( ). Denote

r= ¢ + ¢ +G b x p x f x b x J b x, ,x
2 2( ) ( ){[ ( ) ( )] ( ) ( )} and using variation of calculus, the optimal b x( ) that

minimizes ò G b x x, d
a

a

1

2 ( ) should satisfy the Euler–Lagrange equation

¶
¶

-
¶
¶

¶
¶ ¢

=
G

b x

G

b
0, 14( )

with theNeumann boundary condition = =¶
¶ ¢ =

¶
¶ ¢ =

0G

b x a

G

b x a1 2

. Substituting the expression of G b x,( ) into
the equation, one can obtain

⎡
⎣⎢

⎤
⎦⎥r

=
¶
¶

¢ + ¢
p x b x

x
p x

f x b x

J
, 15

x

( ) ( ) ( ) ( ) ( )
( )

( )

which gives the following differential equation for the optimal b x( )

r
r

r

¢¢ + ¢¢ + ¢ ¢ + ¢

=
¢

¢ + ¢ +

p x b x f x p x f x b x

p x J

J
b x f x J p x b x , 16x

x
x

( )[ ( ) ( )] ( )[ ( ) ( )]
( ) ( )

( )
[ ( ) ( )] ( ) ( ) ( ) ( )

which can be reorganized andwritten compactly as

⎛
⎝⎜

⎞
⎠⎟r

r
= ¢ + ¢

¶
¶

+ ¢¢ + ¢¢J b x b x f x
x

p x

J
b x f xln , 17x

x

( ) ( ) [ ( ) ( )] ( )
( )

( ) ( ) ( )

with boundary conditions ¢ = - ¢b a f a1 1( ) ( ) and ¢ = - ¢b a f a2 2( ) ( ). Note that the obtained solution of b x( )may
not correspond to an actual bias of an estimator, it is just used as a tool to get the lower bound [35]. The optimal

3
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bias b x( ) can then be obtained by solving this equation, either numerically or analytically. Next, substituting it
back to equation (13), one can get a valid lower bound for all estimates.

If the prior distribution p x( ) and the quantumFisher information rJ x( ) are independent of x, then the
equation simplifies to

= ¢¢ + ¢¢Jb x b x f x , 18( ) ( ) ( ) ( )

which can be analytically solved. For example consider a uniformprior distribution on a0,( ), andwewould like
to estimate the unknown parameter itself, i.e., =f x x( ) . In this casewe can obtain an analytical solution for the
optimal bias

=
- -

b x
J a x J x

J J a

cosh cosh

sinh
. 19( ) [ ( )] ( )

( )
( )

Substituting it back to the right side of the inequality (13), we obtain a valid lower bound for all estimates

⎜ ⎟⎛
⎝

⎞
⎠ -x

J aJ

a
JMSE

1 2
tanh

2
. 20

3 2
( ˆ) ( )

Compare to the quantumCramér–Rao bound, this bound has an extra termwhich is then always lower.

3. Examples

In this section, we give four examples for the valid lower bound. In the first three examples, theQFI is
independent of the parameter under estimation. In these examples, taking the prior distribution as uniform, the
MSE can be directly obtained via equation (20). However, in some cases, theQFI is actually dependent on the
estimated parameter. The fourth example is such a case. In this example, the optimal bias has to be solved via
equation (17).

Example 1.As thefirst example, we consider N spins in theNOON state, ñ + ñ 00 0 11 1 2 ,(∣ ∣ ) which
evolves under the dynamics = s- ÄU x e xt Ni 23( ) ( ) (same unitary evolution s-e xti 23 acts on each of the N spins)
with s = ñá + ñ0 1 1 01 ∣ ∣ ∣ ∣, s = - ñá + ñái 0 1 i 1 0y ∣ ∣ ∣ ∣and s = ñá - ñá0 0 1 13 ∣ ∣ ∣ ∣as Paulimatrices. After t units of
time it evolves to

y ñ = ñ + ñ- x
1

2
e 00 0 e 11 1 . 21Nxt Nxti

2
i
2∣ ( ) ( ∣ ∣ ) ( )

Wecan take the time as a unit, i.e., =t 1. ThisNOON state has the quantumFisher information =J N 2 [14].
For n times repeatedmeasurements, the quantumFisher information is nN 2. If the prior distribution p x( ) is
uniformon a0,( ), then from equation (20), we have

⎜ ⎟⎛
⎝

⎞
⎠ -x

nN aN n

a
n NMSE

1 2
tanh

2
. 22

2 3 3 2
( ˆ) ( )

Wewill compare these boundswith an actual estimation procedure using theMMSE estimator. Consider the
measurements in the basis of y ñ = ñ + ñ 00 0 11 1 20∣ (∣ ∣ ) and y ñ = ñ - ñ 00 0 11 1 2 ,1∣ (∣ ∣ )
which has themeasurement results 0 and 1with probability distribution y y= á ñ =p Nxcos 2x0 0

2 2∣ ∣ ∣ ( ) and
= - =p p Nx1 sin 21 0

2( ). Assuming themeasurement is repeated n times, the probability that has k outcomes
as 1 is given by

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= =- -p k x

n

k
p p

n

k

Nx Nx
sin

2
cos

2
, 23k n k k n k

1 0
2 2( ∣ ) ( )( )

where n

k( ) is the binomial coefficient. Fromwhichwe can then obtain theMMSE estimator as explained in the

introduction.
To compare theQCRB,MMSE andOBBwith themean square error of this procedure, we plot these three

quantities as functions ofmeasurement number n infigure 1. The solid red, dashed blue lines and black dots in
thisfigure represent themean square error for theMMSE estimator, theQCRB and theOBB, respectively. From
whichwe can see that whileQCRB fails to calibrate the performance of theMMSE estimator, the optimal biased
bound provides a valid lower bound. And from the closeness between theMMSE estimator and the optimal
biased bound, one can gauge that in this case theMMSE estimator is almost optimal. The bias for theMMSE
estimator is also plotted infigure 2. It can be seen thatwhen n is small, theMMSE estimator is indeed biased, for
this reason theQCRB fails to calibrate the performance, while when n gets larger, the estimator becomesmore
unbiased, indicating a transition into the asymptotical regimewhere theQCRB starts to be valid.

4
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Example 2.Weconsider a qubit undergoing an evolutionwith dephasing noise. Themaster equation for the
densitymatrix ρ of the qubit is

⎡
⎣⎢

⎤
⎦⎥r

s
r

g
s rs r= - + -xi

2
,

2
, 24z

z z˙ ( ) ( )

where γ is the decay rate and x is the parameter under estimation. Take the initial state as
y ñ = ñ + ñ0 1 20∣ (∣ ∣ ) , then after time t , whichwe normalize to 1, the evolved state reads

⎛
⎝⎜

⎞
⎠⎟r

h
h

=
-1

2

1 e

e 1
, 25x

x

x

i

i
( )

where h g= -exp( ). The quantumFisher information in this case is given by h=J 2. The quantumCramér–
Rao bound for n repeatedmeasurements then gives


h

x
n

MSE
1

. 26
2

( ˆ) ( )

For the optimal biased boundwe again takes the prior distribution p x( ) as uniformon p0,( ). Based on
equation (20), one can get the optimal biased bound as

Figure 1.Mean square error for theminimummean square error estimator (MMSE, solid red line, equation (1)), optimal biased
bound (OBB, black dots, equation (22)) and quantumCramér–Rao bound (QCRB, dashed blue line)with different number of
repeatedmeasurements n. Here we consider aNOONstate ofN=10 particles. The prior distribution p x( ) is taken as the uniform
distribution on p0, 10( ).

Figure 2.Bias for posteriormean inminimummean square error estimator for different number ofmeasurements. n=1: dotted
green line; n=2: dash black line; n=3: dash-dotted red line; n=15: solid blue line; n=20: yellow triangulars. Herewe consider a
NOON state ofN=10 particles. The prior distribution p x( ) is taken as the uniformdistribution on p0, 10( ).

5
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⎜ ⎟⎛
⎝

⎞
⎠

h p h
p

h-x
n n

nMSE
1 2

tanh
2

. 27
2 3

( ˆ)
( )

( )

Wealso use this bound to gauge the performance of ameasurement scheme, whichmeasures in the basis of
y ñ = ñ + ñ0 1 20∣ (∣ ∣ ) and y ñ = ñ - ñ0 1 21∣ (∣ ∣ ) . The distributions of themeasurement results are given by

y r y
h

= á ñ =
+

p x
x

0
1 cos

2
, 28x1 1( ∣ ) ∣ ∣ ( ) ( )

y r y
h

= á ñ =
-

p x
x

1
1 cos

2
. 29x0 0( ∣ ) ∣ ∣ ( ) ( )

The probability that has k outcomes as 1 among n repeatedmeasurements is = -p k x p x p x1 0 .n

k
k n k( )( ∣ ) ( ∣ ) ( ∣ )

Again using theminimummean square error estimator, which is given by the posteriormean

ò=x k p x k x xdˆ ( ) ( ∣ ) , we can get themean square error via equation (1). Infigure 3, we plotted themean square
error for theMMSE estimator, the optimal biased bound and quantumCramér–Rao bound at different strength
of dephasing noise. It can be seen that while the quantumCarmér–Rao bound fails to provide a valid lower
bound, the optimal biased bound provides pretty tight bound at all ranges of dephasing noise, which indicates
that theMMSE estimator is close to be optimal even at the presence of dephasing noises.

Example 3. In this example, we consider a SU(2) interferometer described via a unitary transformation
- xSexp i 2( ). Here S2 is a Schwinger operator defined as = -S a b b a

i2
1

2
( )† † with a a( )† , b b( )† the annihilation

(creation) operators for ports A andB. x is the parameter under estimation. Nowwe take the import state as a
coherent state bñ∣ for port A and a cat state  a añ + - ña(∣ ∣ ) for port B.Here  = +a

a-1 2 2e2 2 2( ) is the
normalization number. Taking into account the phase-matching condition, the quantumFisher information
for x in this case is in the form [37]

a= + + +J n n n n n2 2 , 30A B A B A
2∣ ∣ ( )

where b=nA
2∣ ∣ and a a=n tanhB

2 2∣ ∣ ∣ ∣ are photon numbers in port A andB. Based on above expression, the
quantumFisher information J is independent of x. Thus, for the optimal biased estimation, themean square
error xMSE( ˆ) satisfies equation (20). ThemaximumFisher informationwith respect to nA and nB for afixed yet
large total photon number in this case can be achievedwhen photon numbers for both ports are equal, which is

= +J N Nm
2 [37], with N the total photon number in the interferometer. Using the optimal biased bound and

taking the prior distribution as uniformon a0,( ), for n times repeatedmeasurements, xMSE( ˆ) then satisfies

⎜ ⎟⎛
⎝

⎞
⎠ -x

nJ a nJ

a
nJMSE

1 2
tanh

2
. 31

3 2
( ˆ)

( )
( )

Figure 4 shows the quantumCramér–Rao bound (dashed blue line), the optimal biased bound (dash-dotted
black line) and theminimummean square error for theMMSE estimator (solid red line). The prior distribution
taken as uniform in p0, 5( ). In this figure, = =n n 1A B . For theMMSE estimator, wemeasure along the state

Figure 3.Mean square error for theminimummean square error estimator (MMSE, solid red line, equation (1)), optimal biased
bound (OBB, dash-dotted black line, equation (27)) and quantumCramér–Rao bound (QCRB, dashed blue line) for a qubit at
different rate of dephasing noise η, with themeasurements number n=5. The prior distribution is taken as the uniformdistribution
on p0,( ).

6
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ñ11∣ .We can see that the optimal biased bound provides a valid lower bound at all range of n, however the gap
between themean square error of theMMSE estimator and the bound indicates that themeasurement along the
state ñ11∣ maynot be optimal.

Example 4.The quantumFisher information in above examples is independent of the estimating parameter x.
We give another examplewith the quantumFisher information depending on x.

Consider a qubit systemwith theHamiltonian

s s= +H
B

x x
2

cos sin , 321 3( ) ( )

which describes the dynamics of a qubit under amagnetic field in theXZ plane, the interested parameter denotes
the direction of themagnetic field. The quantumFisher information of this systemhas been recently studied
with variousmethods [38–40]. For a pure initial state ñ + ñ0 1 2(∣ ∣ ) , the quantumFisher information is given
by (with the evolution time normalized as t=1)

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥= -J x

B B
x4 sin

2
1 cos

2
sin , 332 2 2( ) ( )

which depends on x. In this case, we have to solve equation (17). Like previous examples, we take the prior
distribution p x( ) as uniform on p0, 2( ). If we take p=B 2, with n repeatedmeasurements,
= -J n x2 sin2( ), then equation (17) reduces to

- ¢¢ + ¢ = - -n x b x b x b x2 sin sin 2 2 sin sin 2 . 342 2 2( ) ( ) ( ) ( ) ( )

This equation can be numerically solved and by substituting the obtained b x( ) into equation (13), the optimal
biased bounds can be obtainedwhich is plotted infigure 5.

Againwe use this bound to gauge the performance of ameasurement schemewhich takesmeasurements
along y ñ = ñ + ñ0 1 20∣ (∣ ∣ ) and y ñ = ñ - ñ0 1 21∣ (∣ ∣ ) . The probability distribution of themeasurement
results are given by

⎜ ⎟⎛
⎝

⎞
⎠=p x

B
x1 sin

2
sin , 352 2( ∣ ) ( )

and = -p x p x0 1 1( ∣ ) ( ∣ ).WhenB equals to p 2, above probability reduces to =p x x1 sin 22( ∣ ) ( ) . The

probability of having k outcomes as 1 among n repeatedmeasurements is = -p k x p x p x1 0 .n

k
k n k( )( ∣ ) ( ∣ ) ( ∣ )

Using the posteriormean as the estimator, we can obtain themean square error for theMMSE estimator which
is also plotted infigure 5. From thisfigure, one can again see thatwhile the quantumCramér–Rao bound (dashed
blue line) fails to gauge the performance of theMMSE estimator (solid red line), the optimal biased bound (dash-
dotted black line) provides a valid lower bound and from the closeness between themean square error of the
MMSE estimator and the optimal biased bound, one can tell that theMMSE estimator is a good estimator here.

Figure 4.Optimal biased bound (OBB, solid red line, equation (31)), quantumCramér–Rao bound (QCRB, dashed blue line), the
minimummean square error for theMMSE estimator(MMSE, solid red line) for the phase estimation in the interferometer. Herewe
consider a SU(2) interferometer with = =n n 1A B . The prior distribution is uniform in p0, 5( ).
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4. Summary

The optimal biased bound provides a valid lower bound for all estimators, either biased or unbiased. It can thus
be used to calibrate the performance of all estimators in quantumparameter estimation. Asymptotically the
widely used quantumCramér–Rao bound provides a lower bound for quantumparameter estimation, however
in practice the number ofmeasurements are often constrained by resources, and it is hard to tell when quantum
Cramér–Rao bound applies. From the difference between the optimal biased bound and quantumCramér–Rao
bound it also provides away to estimate the number ofmeasurements needed to enter the asymptotical regime.
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