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Abstract

The widely used quantum Cramér—Rao bound (QCRB) sets a lower bound for the mean square error
of unbiased estimators in quantum parameter estimation, however, in general QCRB is only tight in
the asymptotical limit. With a limited number of measurements biased estimators can have a far better
performance for which QCRB cannot calibrate. Here we introduce a valid lower bound for all
estimators, either biased or unbiased, which can serve as standard of merit for all quantum parameter
estimations.

1. Introduction

An important task in quantum metrology is to find out the ultimate achievable precision limit and design
schemes to attain it. This turns out to be a hard task, and one often has to resort to various lower bounds to gauge
the performance of heuristic approaches, such as the quantum Cramér—Rao bound [1-4], the quantum
Ziv—Zakaibound [5], quantum measurement bounds [6] and Weiss—Weinstein family of error bounds [7].
Among these bounds the quantum Cramér—Rao bound (QCRB) is the most widely used lower bound for
unbiased estimators [8—30]. However, with a limited number of measurements many practical estimators are
usually biased. For example the minimum mean square error (MMSE) estimator, which is given by the posterior
mean X (y) = f p (x]y)xdx [34], is in general biased in the finite regime, here x denotes the parameter and

y denotes measurement results, the posterior probability distribution p (x|y) can be obtained by the Bayes’ rule

P(y1x)p(x)
X = T
py) Jr&10p @) dx

rule. The MMSE estimator provides the minimum mean square error

, with p (x) as the prior distribution of xand p (y|x) = Tr (p,M,) given by the Born’s

MSEG®) = [p@ Y G0) — (k) d. M
k=0

The performance of this estimator, however, cannot be calibrated by quantum Cramér—Rao bound in the finite
regime as with limited number of measurements it is usually biased. This is also the case for many other
estimators including the commonly used maximum likelihood estimator [27-30].

In this paper we derive an optimal biased bound (OBB) which sets a valid lower bound for all estimators in
quantum parameter estimation, either biased or unbiased. This bound works for arbitrary number of
measurements, thus can be used to gauge the performances of all estimators in quantum parameter estimation.
And the difference between this bound and the quantum Cramér—Rao bound also provides a way to gauge when
quantum Cramér—Rao bound can be safely used, i.e., it provides a way to gauge the number of measurements
needed for entering the asymptotical regime that the quantum Cramér—Rao bound works. The classical optimal
biased bound has been used in classical signal processing [35, 36].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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2. Main result

Based on different assumptions there exists different ways of deriving lower bounds, for example some Bayesian
quantum Cramér—Rao bounds, which are based on a quantum type of Van Tree inequality, have been obtained
[31-33]. These bounds require the differentiability of the prior distribution at the boundary of the support
region, thus may not apply, for example, to the uniform prior distribution. The optimal biased bound does not
require the differentiability of the prior distribution at the boundary, thus can be applied more broadly. For the
completeness, we will first follow the treatment of Helstrom [1] to derive alower bound for estimators with a
fixed bias, from which we then derive a valid lower bound for all estimators by optimizing the bias.

We consider the general case of estimating a function f (x) for the interested parameter x with a given prior
distribution. To make any estimation, one needs to first perform some measurements on the state p,, which are
generally described by a set of Positive Operator Valued Measurements (POVM), denoted as {1, }. The

measurements have probabilistic outcomes y with probability p (y|x) = Tr(II, p,). An estimator f (), based

on the measurement results y, has amean E (f N x) = ff N Tr(p1L)dy = f (x) + b(x), where b (x)
represents the bias of the estimation. This equation can be written in another form

G = BT dy = o. @

where we use E (x) as a short notation for E ( f (y)|x) which equalsto f (x) + b(x) and only depends on x.
Assuming the prior distribution is given by p (x), the mean square error is then in the form

MSE(H) = [dx [peolf () = F@P Tr(p)dy = [pIsf” + b (0)1dx, 3

where 6f2 = f (f (y) — E(x))*Tr(p, I1,)dy is the variance off ).

Differentiating equation (2) with respect to x and use the fact that f E'(x)Tr(p,I1,)dy = E'(x), with
E'(x) := OE/Ox we get
Ip

ax" Hy)dy = E'(x). 4)

G- E(x))Tr(

Now multiply p (x) atboth sides of equation (4) and substitute the following equation into it

dp 1
—= = —(p.L + Lp,), >
% > (ox Px) (5)

here L is known as the symmetric logarithmic derivative of p, which is the solution to equation (5). We then
obtain

Re [p()(f (5) = EG)Tr(p LIL)dy = E'(x)p(x), ©)

where Re(-) represents the real part. Multiply both sides again with a real function z (x) then integrate with
respect to x,

Re [ax [p)(f ()~ EG)Tr 0 L) dy = [p@E @z@adx. @)

Now we denote A = /p(x) (f (y) — Ex)){/pl, and B = {/p(x) z(x) /o L,/1],, then theleft side of above
equation can be rewritten as Re f dx f Tr(A'B)dy. Therefore, equation (7) now has the form

Re f due f Tr(A'B) dy = f POE (0)z(x) dx. (8)

Using Schwarz inequality we have
2
<( f dx f Tr(A*A)dy)( f dx f Tr(B*B)dy)

‘ Ref dxf Tr(A'B)dy
= [r@&" ax [ w2 @I d
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the last equality we used the fact that
[ o [ ey | - ‘f dx [ @ () = @) Tr(p,I,)dy

= [psf” dx, ©

and
[ [ 1B & = [pe2wTip )
= [rwz@Ip) dx. (10)
Here ] (p,) = Tr(p,L?) is the quantum Fisher information [1, 2]. Based on above equations, we can obtain
| [P () E (x)z(x) dxl?

[r@22®)]I(p,) dx’

which is valid for any z (x) that satisfies the inequality f p(x)z*(x)J (p,) dx > 0.Assuming J (p,) is complete
positive, i.e., J (p,) > 0,let z(x) = E'(x)/] (p,) we obtain

[red* ax> an

N 12 / b’ (x)]Z
62dx> E (x)dx [f'(x) + b
Jowdl® ax= fpe T B = fpe= == (12)
From equation (3) we then get the lower bound for the mean square error
p [f'(x) + ' ()
MSE(f) > ———————— + b (x) pdx. 13
H= [r (x){ s <x>} (13)

When b(x) = 0, i.e., for unbiased estimators the bound reduces to a Bayesian Cramér—Rao bound [31] (another
Bayesian QCRB using a left logarithmic derivative is in [32]). Furthermore, if f (x) = x, the bound reduces to
the well-used Cramér—Rao form [3]. If we only consider f (x) = x and take the prior distribution as a uniform
one, above bound can be treated as the quantum version of the biased Cramér—Rao bound [1]. The bound given
in equation (13) vividly displays the tradeoff between the variance and the bias of the estimate: at one extreme by
letting b (x) = 0 the unbiased estimates minimize the term b?(x), while the first term is fixed; at the other
extreme by letting b (x) = —f (x) we can minimize the the first term, but now with a fixed bias b2 (x) = f2(x).
The actual minimum of this bound lies somewhere between these two extremes, which provides alower bound
for all estimators.

To obtain a valid lower bound for all estimators we use the variational principle to find the optimal b (x) that
minimizes the bound in equation (13) which follows the treatment in Ref. [36]. Suppose the support of the prior
distribution p (x)isin (a;, ap),1.e., p(x) = 0 for anyx outside (a;, a,). Denote
G(b, x) = p){[f'(x) + V' (x)1*/] (p,) + b*(x)},and using variation of calculus, the optimal b (x) that
minimizes L * G (b, x)dx should satisfy the Euler—Lagrange equation

G006, "
ob  0Ox oV
with the Neumann boundary condition gbc, = gl?, = 0. Substituting the expression of G (b, x) into
x=a x=a,

the equation, one can obtain

15)

P)b(x) = [p( )M],

J(p,)
which gives the following differential equation for the optimal b (x)

P (x) + f"()] + p ) [f'(x) + b (0]

- %ﬁ)()p")[b’(x) + 01+ T (p)p(0)b(x), (16)

which can be reorganized and written compactly as
p(x)
J(p,)

with boundary conditions b’ (a;) = —f'(a;) and b’ (a;) = —f’(a,). Note that the obtained solution of b (x) may
not correspond to an actual bias of an estimator, it is just used as a tool to get the lower bound [35]. The optimal

J(pb(x) = [b'(x) +f’(x)]§—x[ ) + b (x) + f"(x), (17)

3
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bias b (x) can then be obtained by solving this equation, either numerically or analytically. Next, substituting it
back to equation (13), one can get a valid lower bound for all estimates.

If the prior distribution p (x) and the quantum Fisher information J (p,) are independent of x, then the
equation simplifies to

Jb(x) = b"(x) + f"(x), (18)

which can be analytically solved. For example consider a uniform prior distribution on (0, a), and we would like

to estimate the unknown parameter itself, i.e., f (x) = x. In this case we can obtain an analytical solution for the

optimal bias

cosh[\J(a — x)] — cosh({/Jx)
JJ sinh({Ta) '

Substituting it back to the right side of the inequality (13), we obtain a valid lower bound for all estimates

b(x) =

19)

MSE(X) >

1
7 a]?/?

tanh(%ﬁ). (20)
Compare to the quantum Cramér—Rao bound, this bound has an extra term which is then always lower.

3. Examples

In this section, we give four examples for the valid lower bound. In the first three examples, the QFI is
independent of the parameter under estimation. In these examples, taking the prior distribution as uniform, the
MSE can be directly obtained via equation (20). However, in some cases, the QFI is actually dependent on the
estimated parameter. The fourth example is such a case. In this example, the optimal bias has to be solved via
equation (17).

Example 1. As the first example, we consider N spins in the NOON state, (|00 --- 0) + |11 --- 1))/ V2, which
evolves under the dynamics U (x) = (e1%*/2)®N (same unitary evolution e i%**/2 acts on each of the N spins)
with oy = |0) (1] + [1)0], o, = —i|0) (1] + i|1) (0]and o3 = [0) (0] — 1) (1] as Pauli matrices. After ¢ units of
time it evolves to

[ (x)) = %(&N"WOO e 0) + e N 1)). (21)

We can take the time asa unit, i.e., t = 1. This NOON state has the quantum Fisher information | = N?[14].
For # times repeated measurements, the quantum Fisher information is nN2. If the prior distribution p (x) is
uniform on (0, a), then from equation (20), we have
12

N2 aN3n*/?

MSE(%) > tanh (gﬁN). (22)
n

We will compare these bounds with an actual estimation procedure using the MMSE estimator. Consider the
measurements in the basis of [)g) = (|00 --- 0) + |11 --- 1))/~/2 and [¢) = (J00 - 0) — |11 --- 1))/~/2,
which has the measurement results 0 and 1 with probability distribution p, = [(to|t)x) |* = cos*(Nx/2)and

p, = 1 — p, = sin?(Nx/2). Assuming the measurement is repeated # times, the probability that has k outcomes

as 1 is given by
p(klx) = (Z)pfpé”k = (:)Sin”‘ (%)cos“"*") (%) (23)

where (Z ) is the binomial coefficient. From which we can then obtain the MMSE estimator as explained in the
introduction.

To compare the QCRB, MMSE and OBB with the mean square error of this procedure, we plot these three
quantities as functions of measurement number # in figure 1. The solid red, dashed blue lines and black dots in
this figure represent the mean square error for the MMSE estimator, the QCRB and the OBB, respectively. From
which we can see that while QCRB fails to calibrate the performance of the MMSE estimator, the optimal biased
bound provides a valid lower bound. And from the closeness between the MMSE estimator and the optimal
biased bound, one can gauge that in this case the MMSE estimator is almost optimal. The bias for the MMSE
estimator is also plotted in figure 2. It can be seen that when # is small, the MMSE estimator is indeed biased, for
this reason the QCRB fails to calibrate the performance, while when  gets larger, the estimator becomes more
unbiased, indicating a transition into the asymptotical regime where the QCRB starts to be valid.

4
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Figure 1. Mean square error for the minimum mean square error estimator (MMSE, solid red line, equation (1)), optimal biased
bound (OBB, black dots, equation (22)) and quantum Cramér—Rao bound (QCRB, dashed blue line) with different number of
repeated measurements 1. Here we consider a NOON state of N = 10 particles. The prior distribution p (x) is taken as the uniform
distribution on (0, 7/10).
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Figure 2. Bias for posterior mean in minimum mean square error estimator for different number of measurements. n = 1: dotted
green line; n = 2: dash blackline; n = 3: dash-dotted red line; n = 15: solid blue line; n = 20: yellow triangulars. Here we consider a
NOON state of N = 10 particles. The prior distribution p (x) is taken as the uniform distribution on (0, 7/10).

Example 2. We consider a qubit undergoing an evolution with dephasing noise. The master equation for the
density matrix p of the qubit is

, .| Oz
P = _1[?9‘7) P] + %(Uzpaz - p)s (24)

where 7yis the decay rate and x is the parameter under estimation. Take the initial state as
[0) = (|0) + [1))/~/2, then after time ¢, which we normalize to 1, the evolved state reads

11 ne™
= — . > 25
Pr= 7 [ne‘x | J (25)

where 7 = exp(—+). The quantum Fisher information in this case is given by ] = n?. The quantum Cramér—
Rao bound for 7 repeated measurements then gives

MSE(%) > Lz (26)

nmn

For the optimal biased bound we again takes the prior distribution p (x) as uniform on (0, 7). Based on
equation (20), one can get the optimal biased bound as
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Figure 3. Mean square error for the minimum mean square error estimator (MMSE, solid red line, equation (1)), optimal biased
bound (OBB, dash-dotted black line, equation (27)) and quantum Cramér—Rao bound (QCRB, dashed blue line) for a qubit at
different rate of dephasing noise 7, with the measurements number n = 5. The prior distribution is taken as the uniform distribution
on (0, m).

1 2
MSE®) > — — — =
® n?*  w(Jnn)?

We also use this bound to gauge the performance of a measurement scheme, which measures in the basis of
[o) = (|0) + [1))/~/2 and |11) = (|0) — |1))/~/2. The distributions of the measurement results are given by

1 4+ ncos(x)

tanh (gﬁn) (27)

pOL) = (ilpdi) = L, 28)
p(11x) = (olp,libn) = “Zﬂ (29)

The probability that has k outcomes as 1 among 1 repeated measurements is p (k|x) = (: ) P*(1]x)p"*(0]x).
Again using the minimum mean square error estimator, which is given by the posterior mean

x(k) = f p (x]k)xdx, we can get the mean square error via equation (1). In figure 3, we plotted the mean square
error for the MMSE estimator, the optimal biased bound and quantum Cramér—Rao bound at different strength
of dephasing noise. It can be seen that while the quantum Carmér—Rao bound fails to provide a valid lower
bound, the optimal biased bound provides pretty tight bound at all ranges of dephasing noise, which indicates
that the MMSE estimator is close to be optimal even at the presence of dephasing noises.

Example 3. In this example, we consider a SU(2) interferometer described via a unitary transformation
exp(—ixS;). Here S, is a Schwinger operator defined as S, = %(a*b — bta) with a(a"), b (b") the annihilation
(creation) operators for ports A and B. x is the parameter under estimation. Now we take the import state as a
coherent state | 3) for port A and a cat state A, (|o) + | — «)) for port B. Here N2 = 1/(2 + 2e~21oF)isthe

normalization number. Taking into account the phase-matching condition, the quantum Fisher information
for x in this case is in the form [37]

J = 2nang + np + ng + 2mlof?, (30)

where ny = |8>and ng = |a/* tanh|a/? are photon numbers in port A and B. Based on above expression, the
quantum Fisher information ] is independent of x. Thus, for the optimal biased estimation, the mean square
error MSE (%) satisfies equation (20). The maximum Fisher information with respect to 1, and njp for a fixed yet
large total photon number in this case can be achieved when photon numbers for both ports are equal, which is
Jm = N2 + N [37], with N the total photon number in the interferometer. Using the optimal biased bound and
taking the prior distribution as uniform on (0, a), for # times repeated measurements, MSE (X) then satisfies

! tanh(g\/n_]). (31)

2
MSE(X) > — — ——
) nj  a(n])*?
Figure 4 shows the quantum Cramér—Rao bound (dashed blue line), the optimal biased bound (dash-dotted
black line) and the minimum mean square error for the MMSE estimator (solid red line). The prior distribution
taken as uniformin (0, 7/5). In this figure, ny = ny = 1. For the MMSE estimator, we measure along the state
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Figure 4. Optimal biased bound (OBB, solid red line, equation (31)), quantum Cramér—Rao bound (QCRB, dashed blue line), the
minimum mean square error for the MMSE estimator(MMSE, solid red line) for the phase estimation in the interferometer. Here we
consider a SU(2) interferometer with ny = ng = 1. The prior distribution is uniform in (0, 7/5).

|11). We can see that the optimal biased bound provides a valid lower bound at all range of #, however the gap

between the mean square error of the MMSE estimator and the bound indicates that the measurement along the
state |11) may not be optimal.

Example 4. The quantum Fisher information in above examples is independent of the estimating parameter x.
We give another example with the quantum Fisher information depending on x.

Consider a qubit system with the Hamiltonian

H= ?(01 cosx + o3 sinx), (32)

which describes the dynamics of a qubit under a magnetic field in the XZ plane, the interested parameter denotes
the direction of the magnetic field. The quantum Fisher information of this system has been recently studied

with various methods [38—40]. For a pure initial state (|0) + |1))/~/2, the quantum Fisher information is given
by (with the evolution time normalized as t = 1)

J(x) = 4sin? (g)[l — cos? (g) sinzx], (33)

which depends on x. In this case, we have to solve equation (17). Like previous examples, we take the prior

distribution p (x) as uniform on (0, 7/2). If we take B = 7/2, with n repeated measurements,
J = n(2 — sin’x), then equation (17) reduces to

n(2 — sin?x)b"” + sin(Qx)b’ = (2 — sin*x)*b — sin(2x). (34)
This equation can be numerically solved and by substituting the obtained b (x) into equation (13), the optimal
biased bounds can be obtained which is plotted in figure 5.

Again we use this bound to gauge the performance of a measurement scheme which takes measurements
along [1g) = (|0) + [1))/~/2 and |¢1) = (|0) — |1))/~/2. The probability distribution of the measurement
results are given by

p(1]x) = sin? (g)sinzx, (35)
and p(0|x) = 1 — p(1]x). When Bequals to 7/2, above probability reduces to p (1]x) = (sin?x)/2. The
probability of having k outcomes as 1 among n repeated measurements is p (k|x) = : X (1]x)p" % (0]x).
Using the posterior mean as the estimator, we can obtain the mean square error for the MMSE estimator which
isalso plotted in figure 5. From this figure, one can again see that while the quantum Cramér—Rao bound (dashed
blue line) fails to gauge the performance of the MMSE estimator (solid red line), the optimal biased bound (dash-
dotted black line) provides a valid lower bound and from the closeness between the mean square error of the
MMSE estimator and the optimal biased bound, one can tell that the MMSE estimator is a good estimator here.

7
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Figure 5. Mean square error for minimum mean square error estimator (MMSE, solid red line, equation (1)), the optimal biased
bound (OBB, dash-dotted black line) and quantum Cramér—Rao bound (QCRB, dashed blue line) as a function of measurement
number n. Here we consider a qubit under a magnetic field in the XZ plane. The prior distribution is taken as uniform in (0, 7/2).

4. Summary

The optimal biased bound provides a valid lower bound for all estimators, either biased or unbiased. It can thus
be used to calibrate the performance of all estimators in quantum parameter estimation. Asymptotically the
widely used quantum Cramér—Rao bound provides alower bound for quantum parameter estimation, however
in practice the number of measurements are often constrained by resources, and it is hard to tell when quantum
Cramér—Rao bound applies. From the difference between the optimal biased bound and quantum Cramér—Rao

bound italso provides a way to estimate the number of measurements needed to enter the asymptotical regime.
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