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Abstract
Quantum Fisher information matrix (QFIM) is a core concept in theoretical 
quantum metrology due to the significant importance of quantum Cramér–
Rao bound in quantum parameter estimation. However, studies in recent 
years have revealed wide connections between QFIM and other aspects of 
quantum mechanics, including quantum thermodynamics, quantum phase 
transition, entanglement witness, quantum speed limit and non-Markovianity. 
These connections indicate that QFIM is more than a concept in quantum 
metrology, but rather a fundamental quantity in quantum mechanics. In this 
paper, we summarize the properties and existing calculation techniques of 
QFIM for various cases, and review the development of QFIM in some aspects 
of quantum mechanics apart from quantum metrology. On the other hand, 
as the main application of QFIM, the second part of this paper reviews the 
quantum multiparameter Cramér–Rao bound, its attainability condition and 
the associated optimal measurements. Moreover, recent developments in a 
few typical scenarios of quantum multiparameter estimation and the quantum 
advantages are also thoroughly discussed in this part.
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1. Introduction

After decades of rapid development, quantum mechanics has now gone deep into almost every 
corner of modern science, not only as a fundamental theory, but also as a technology. The 
technology originated from quantum mechanics is usually referred to as quantum technology, 
which is aiming at developing brand new technologies or improving current existing tech-
nologies with the association of quantum resources, quantum phenomena or quantum effects. 
Some aspects of quantum technology, such as quantum communications, quantum computa-
tion, quantum cryptography and quantum metrology, have shown great power in both theory 
and laboratory to lead the next industrial revolution. Among these aspects, quantum metrology 
is the most promising one that can step into practice in the near future.

Quantum metrology focuses on making high precision measurements of given parameters 
using quantum systems and quantum resources. Generally, a complete quantum metrological 
process contains four steps: (1) preparation of the probe state; (2) parameterzation; (3) meas-
urement and (4) classical estimation, as shown in figure 1. The last step has been well studies 
in classical statistics, hence, the major concern of quantum metrology is the first three steps.

Quantum parameter estimation is the theory for quantum metrology, and quantum Cramér–
Rao bound is the most well-studied mathematical tool for quantum parameter estimation [1, 
2]. In quantum Cramér–Rao bound, the quantum Fisher information (QFI) and quantum 
Fisher information matrix (QFIM) are the key quantities representing the precision limit for 
single parameter and multiparameter estimations. In recent years, several outstanding reviews 
on quantum metrology and quantum parameter estimation have been provided from differ-
ent perspectives and at different time, including the ones given by Giovannetti et al on the 
quantum-enhanced measurement [3] and the advances in quantum metrology [4], the ones 
given by Paris [5] and Toth et al [6] on the QFI and its applications in quantum metrology, 
the one by Braun et al on the quantum enhanced metrology without entanglement [7], the 
ones by Pezzè et al [8] and Huang et al [9] on quantum metrology with cold atoms, the one 
by Degen et al on general quantum sensing [10], the one by Pirandola et al on the photonic 
quantum sensing [11], the ones by Dowling on quantum optical metrology with high-N00N 
state [12] and Dowling and Seshadreesan on theoretical and experimental optical technologies 
in quantum metrology, sensing and imaging [13], the one by Demkowicz-Dobrzański et al 
on the quantum limits in optical interferometry [14], the one by Sidhu and Kok on quantum 
parameter estimation from a geometric perspective [15], and the one by Szczykulska et al 
on simultaneous multiparameter estimation [16]. Petz et al also wrote a thorough technical 
introduction on QFI [17].

Apart from quantum metrology, the QFI also connects to other aspects of quantum physics, 
such as quantum phase transition [18–20] and entanglement witness [21, 22]. The widespread 
application of QFI may be due to its connection to the Fubini-study metric, a Kähler metric in 
the complex projective Hilbert space. This relation gives the QFI a strong geometric meaning 
and makes it a fundamental quantity in quantum physics. Similarly, the QFIM shares this con-
nection since the diagonal entries of QFIM simply gives the QFI. Moreover, the QFIM also 
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connects to other fundamental quantity like the quantum geometric tensor [23]. Thus, besides 
the role in multiparameter estimation, the QFIM should also be treated as a fundamental 
quanti ty in quantum mechanics.

In recent years, the calculation techniques of QFIM have seen a rapid development in vari-
ous scenarios and models. However, there lack papers that thoroughly summarize these tech-
niques in a structured manner for the community. Therefore, this paper not only reviews the 
recent developments of quantum multiparameter estimation, but also provides comprehensive 
techniques on the calculation of QFIM in a variety of scenarios. For this purpose, this paper is 
presented in a way similar to a textbook with many technical details given in the appendices, 
which could help the readers to follow and better understand the corresponding results.

2. Quantum Fisher information matrix

2.1. Definition

Consider a vector of parameters �x = (x0, x1, ..., xa, ...)T with xa the ath parameter. �x  is encoded 
in the density matrix ρ = ρ(�x). In the entire paper we denote the QFIM as F , and an entry of 
F  is defined as [1, 2]

Fab :=
1
2

Tr (ρ{La, Lb}) , (1)

where {·, ·} represents the anti-commutation and La (Lb) is the symmetric logarithmic deriva-
tive (SLD) for the parameter xa (xb), which is determined by the equation6

∂aρ =
1
2
(ρLa + Laρ) . (2)

The SLD operator is a Hermitian operator and the expected value Tr(ρLa) = 0. Utilizing the 
equation above, Fab can also be expressed by [24]

Fab = Tr (Lb∂aρ) = −Tr(ρ∂aLb). (3)

Based on equation (1), the diagonal entry of QFIM is

Faa = Tr
(
ρL2

a

)
, (4)

which is exactly the QFI for parameter xa.

Figure 1. Schematic of a complete quantum metrological process, which contains four 
steps: (1) preparation of the probe state; (2) parameterzation; (3) measurement; (4) 
classical estimation.

6 In the entire paper the notation ∂a (∂t) is used as an abbreviation of ∂
∂xa

 
(
∂
∂t

)
.
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The definition of Fisher information matrix originated from classical statistics. For a prob-
ability distribution { p(y|�x)} where p(y|�x) is the conditional probability for the outcome result 
y , an entry of Fisher information matrix is defined as

Iab :=
∫

[∂ap(y|�x)] [∂bp(y|�x)]
p(y|�x)

dy. (5)

For discrete outcome results, it becomes Iab :=
∑

y
[∂ap(y|�x)][∂bp(y|�x)]

p(y|�x) . With the development 

of quantum metrology, the Fisher information matrix concerning classical probability distri-
bution is usually referred to as classical Fisher information matrix (CFIM), with the diago-
nal entry referred to as classical Fisher information (CFI). In quantum mechanics, it is well 
known that the choice of measurement will affect the obtained probability distribution, and 
thus result in different CFIM. This fact indicates the CFIM is actually a function of measure-
ment. However, while the QFI is always attained by optimizing over the measurements [30], 
i.e. Faa = max{Πy} Iaa(ρ, {Πy}), where {Πy} represents a positive-operator valued measure 
(POVM), in general there may not be any measurement that can attain the QFIM.

The QFIM based on SLD is not the only quantum version of CFIM. Another well-used 
ones are based on the right and left logarithmic derivatives [2, 25], defined by ∂aρ = ρRa and 
∂aρ = R†

aρ, with the corresponding QFIM Fab = Tr(ρRaR†
b). Different with the one based on 

SLD, which are real symmetric, the QFIM based on right and left logarithmic derivatives are 
complex and Hermitian. All versions of QFIMs belong to a family of Riemannian monotone 
metrics established by Petz [26, 27] in 1996, which will be further discussed in section 2.4. All 
the QFIMs can provide quantum versions of Cramér–Rao bound, yet with different achiev-
ability. For instance, for the D-invariant models only the one based on right logarithmic deriv-
ative provides an achievable bound [28]. The quantum Cramér–Rao bound will be further 
discussed in section 3. For pure states, Fujiwara and Nagaoka [29] also extended the SLD to 
a family via ∂aρ = 1

2 (ρLa + L†
aρ), in which La is not necessarily to be Hermitian, and when it 

is, it reduces to the SLD. An useful example here is the anti-symmetric logarithmic derivative 
L†

a = −La. This paper focuses on the QFIM based on the SLD, thus, the QFIM in the follow-
ing only refers to the QFIM based on SLD without causing any confusion.

The properties of QFI have been well organized by Tóth et al in [6]. Similarly, the QFIM 
also has some powerful properties that have been widely applied in practice. Here we organize 
these properties as below.

Proposition 2.1. Properties and useful formulas of the QFIM.

 •  F  is real symmetric, i.e. Fab = Fba ∈ R7.
 •  F  is positive semi-definite, i.e. F � 0. If F > 0, then [F−1]aa � 1/Faa for any a.
 •  F(ρ) = F(UρU†) for a �x -independent unitary operation U.
 •  If ρ =

⊗
i ρi(�x), then F(ρ) =

∑
i F(ρi).

 •  If ρ =
⊕

i µiρi(�x) with µi a �x -independent weight, then F(ρ) =
∑

i µiF(ρi).
 •  Convexity: F( pρ1 + (1 − p)ρ2) � pF(ρ1) + (1 − p)F(ρ2) for p ∈ [0, 1].
 •  F  is monotonic under completely positive and trace preserving map Φ, i.e. 

F(Φ(ρ)) � F(ρ) [27].
 •  If �y  is function of �x , then the QFIMs with respect to �y  and �x  satisfy F(ρ(�x)) = JTF(ρ(�y))J , 

with J the Jacobian matrix, i.e. Jij = ∂yi/∂xj.

7 R  represents the set of real numbers.

J. Phys. A: Math. Theor. 53 (2020) 023001
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2.2. Parameterization processes

Generally, the parameters are encoded into the probe state via a parameter-dependent dynam-
ics. According to the types of dynamics, there exist three types of parameterization processes: 
Hamiltonian parameterization, channel parameterization and hybrid parameterization, as 
shown in figure 2. In the Hamiltonian parameterization, �x  is encoded in the probe state ρ0 
through the Hamiltonian H�x . The dynamics is then governed by the Schrödinger equation

∂tρ = −i[H�x, ρ], (6)
and the parameterized state can be written as

ρ = e−iH�xtρ0eiH�xt. (7)
Thus, the Hamiltonian parameterization is a unitary process. In some other scenarios the 
parameters are encoded via the interaction with another system, which means the probe sys-
tem here has to be treated as an open system and the dynamics is governed by the master equa-
tion. This is the channel parameterization. The dynamics for the channel parameterization is

∂tρ = −i[H, ρ] + L�x(ρ), (8)

where L�x(ρ) represents the decay term dependent on �x . A well-used form of L�x  is the Lindblad 
form

L(ρ) =
∑

j

γj

(
ΓjρΓ

†
j −

1
2

{
Γ†

j Γj, ρ
})

, (9)

where Γj is the j th Lindblad operator and γj  is the j th decay rate. All the decay rates are unknown 
parameters to be estimated. The third type is the hybrid parameterization, in which both the 
Hamiltonian parameters and decay rates in equation (8) are unknown and need to be estimated.

2.3. Calculating QFIM

In this section we review the techniques in the calculation of QFIM and some analytic results 
for specific cases.

2.3.1. General methods. The traditional derivation of QFIM usually assumes the rank of the 
density matrix is full, i.e. all the eigenvalues of the density matrix are positive. Specifically 

if we write ρ =
∑dim(ρ)−1

i=0 λi|λi〉〈λi|, with λi and |λi〉 the eigenvalue and the corresponding 
eigenstate, it is usually assumed that λi > 0 for all 0 � i � dim(ρ)− 1. Under this assump-
tion the QFIM can be obtained as follows.

Theorem 2.1. The entry of QFIM for a full-rank density matrix with the spectral decompo-
sition ρ =

∑d−1
i=0 λi|λi〉〈λi| can be written as

Fab =

d−1∑
i,j=0

2Re(〈λi|∂aρ|λj〉〈λj|∂bρ|λi〉)
λi + λj

, (10)

where d := dim(ρ) is the dimension of the density matrix.

One can easily see that if the density matrix is not of full rank, there can be divergent terms 
in the above equation. To extend it to the general density matrices which may not have full 
rank, we can manually remove the divergent terms as

J. Phys. A: Math. Theor. 53 (2020) 023001
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Fab =

d−1∑
i,j=0,λi+λj �=0

2Re(〈λi|∂aρ|λj〉〈λj|∂bρ|λi〉)
λi + λj

. (11)

By substituting the spectral decomposition of ρ  into the equation above, it can be rewritten 
as [5]

Fab =

d−1∑
i=0

(∂aλi)(∂bλi)

λi
+

∑
i�=j,λi+λj �=0

2(λi − λj)
2

λi + λj
Re (〈λi|∂aλj〉〈∂bλj|λi〉) .

 (12)
Recently, it has been rigorously proved that the QFIM for a finite dimensional density matrix 
can be expressed with the support of the density matrix [31]. The support of a density matrix, 
denoted by S , is defined as S := {λi ∈ {λi}|λi �= 0} ({λi} is the full set of ρ’s eigenvalues), 
and the spectral decomposition can then be modified as ρ =

∑
λi∈S λi|λi〉〈λi|. The QFIM can 

then be calculated via the following theorem.

Theorem 2.2. Given the spectral decomposition of a density matrix, ρ =
∑

λi∈S |λi〉〈λi| 
where S = {λi ∈ {λi}|λi �= 0} is the support, an entry of QFIM can be calculated as [31]

Fab =
∑
λi∈S

(∂aλi)(∂bλi)

λi
+

∑
λi∈S

4λiRe (〈∂aλi|∂bλi〉)

−
∑

λi,λj∈S

8λiλj

λi + λj
Re(〈∂aλi|λj〉〈λj|∂bλi〉).

 

(13)

The detailed derivation of this equation can be found in appendix B. It is a general expres-
sion of QFIM for a finite-dimensional density matrix of arbitrary rank. Due to the relation 
between the QFIM and QFI, one can easily obtain the following corollary.

Figure 2. The schematic of multiparameter parameterization processes. (a) Hamiltonian 
parameterization (b) Channel parameterization (c) Hybrid parameterization.

J. Phys. A: Math. Theor. 53 (2020) 023001
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Corollary 2.2.1. Given the spectral decomposition of a density matrix, ρ =
∑

λi∈S |λi〉〈λi|, 
the QFI for the parameter xa can be calculated as [32–36]

Faa =
∑
λi∈S

(∂aλi)
2

λi
+

∑
λi∈S

4λi〈∂aλi|∂aλi〉 −
∑

λi,λj∈S

8λiλj

λi + λj
|〈∂aλi|λj〉|2. (14)

The first term in equations (12) and (13) can be viewed as the counterpart of the classical 
Fisher information as it only contains the derivatives of the eigenvalues which can be regarded 
as the counterpart of the probability distribution. The other terms are purely quantum [5, 36]. 
The derivatives of the eigenstates reflect the local structure of the eigenspace on �x . The effect 
of this local structure on QFIM can be easily observed via equations (12) and (13).

The SLD operator is important since it is not only related to the calculation of QFIM, but 
also contains the information of the optimal measurements and the attainability of the quant um 
Cramér–Rao bound, which will be further discussed in sections 3.1.2 and 3.1.3. In terms of the 
eigen-space of ρ , the entries of the SLD operator for λi,λj ∈ S  can be obtained as follows8

〈λi|La|λj〉 = δij
∂aλi

λi
+

2(λj − λi)

λi + λj
〈λi|∂aλj〉; (15)

for λi ∈ S and λj �∈ S, 〈λi|La|λj〉 = −2〈λi|∂aλj〉; and for λi,λj �∈ S , 〈λi|La|λj〉 can take arbi-
trary values. Fujiwara and Nagaoka [29, 37] first proved that this randomness does not affect 
the value of QFI and all forms of SLD provide the same QFI. As a matter of fact, this con-
clusion can be extended to the QFIM for any quantum state [31, 38], i.e. the entries that can 
take arbitrary values do not affect the value of QFIM. Hence, if we focus on the calculation 
of QFIM we can just set them zeros. However, this randomness plays a role in the search of 
optimal measurement, which will be further discussed in section 3.1.3.

In control theory, equation (2) is also referred to as the Lyapunov equation and the solution 
can be obtained as [5]

La = 2
∫ ∞

0
e−ρs (∂aρ) eρsds, (16)

which is independent of the representation of ρ . This can also be written in an expanded form 
[38]

La = −2 lim
s→∞

∞∑
n=0

(−s)n+1

(n + 1)!
Rn

ρ(∂aρ), (17)

here Rρ(·) := {ρ, ·} denotes the anti-commutator. Using the fact that 
Rn

ρ(∂aρ) =
∑n

m=0

(n
m

)
ρm (∂aρ) ρ

n−m, where 
(n

m

)
= n!

m!(n−m)! , equation (17) can be rewritten as

La = −2 lim
s→∞

∞∑
n=0

n∑
m=0

(−s)n+1

(n + 1)!

(
n
m

)
ρm (∂aρ) ρ

n−m. (18)

This form of SLD can be easy to calculate if ρm(∂aρ)ρ
n−m is only non-zero for limited number 

of terms or has some recursive patterns.
Recently, Safránek [39] provided another method to compute the QFIM utilizing the den-

sity matrix in Liouville space. In Liouville space, the density matrix is a vector containing all 
the entries of the density matrix in Hilbert space. Denote vec(A) as the column vector of A 

8 The derivation is in appendix B.
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in Liouville space and vec(A)† as the conjugate transpose of vec(A). The entry of vec(A) is 
[vec(A)]id+j = Aij (i, j ∈ [0, d − 1]). The QFIM can be calculated as follows.

Theorem 2.3. For a full-rank density matrix, the QFIM can be expressed by [39]

Fab = 2vec(∂aρ)
† (ρ⊗ + ⊗ ρ∗)

−1 vec(∂bρ), (19)

where ρ∗ is the conjugate of ρ , and the SLD operator in Liouville space, denoted by vec(La), 
reads

vec(La) = 2 (ρ⊗ + ⊗ ρ∗)
−1 vec(∂aρ). (20)

This theorem can be proved by using the facts that vec(AB ) = (A ⊗ )vec(B) =
( ⊗ BT)vec(A) (BT is the transpose of B) [40–42] and Tr(A†B) = vec(A)†vec(B).

Bloch representation is another well-used tool in quantum information theory. For a 
d-dimensional density matrix, it can be expressed by

ρ =
1
d

(
+

√
d(d − 1)

2
�r · �κ

)
, (21)

where �r = (r1, r2..., rm, ...)T is the Bloch vector (|�r|2 � 1) and �κ is a (d2  −  1)-dimensional 
vector of su(d) generator satisfying Tr(κi) = 0. The anti-commutation relation for them is 

{κi,κj} = 4
d δij +

∑d2−1
m=1 µijmκm, and the commutation relation is [κi,κj] = i

∑d2−1
m=1 εijmκm, 

where µijm and εijm are the symmetric and antisymmetric structure constants. Watanabe et al 
recently [43–45] provided the formula of QFIM for a general Bloch vector by considering the 
Bloch vector itself as the parameters to be estimated. Here we extend their result to a general 
case as the theorem below.

Theorem 2.4. In the Bloch representation of a d-dimensional density matrix, the QFIM 
can be expressed by

Fab = (∂b�r)T
(

d
2(d − 1)

G −�r�r T
)−1

∂a�r,
 (22)

where G is a real symmetric matrix with the entry

Gij =
1
2

Tr(ρ{κi,κj}) =
2
d
δij +

√
d − 1

2d

∑
m

µijmrm. (23)

The most well-used scenario of this theorem is single-qubit systems, in which 
ρ = ( +�r · �σ)/2 with �σ = (σx,σy,σz) the vector of Pauli matrices. For a single-qubit sys-
tem, we have the following corollary.

Corollary 2.4.1. For a single-qubit mixed state, the QFIM in Bloch representation can be 
expressed by

Fab = (∂a�r) · (∂b�r) +
(�r · ∂a�r)(�r · ∂b�r)

1 − |�r|2
, (24)

where |�r| is the norm of �r . For a single-qubit pure state, Fab = (∂a�r) · (∂b�r).
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The diagonal entry of equation (24) is exactly the one given by [47]. The proofs of the 
theorem and corollary are provided in appendix C.

2.3.2. Pure states. A pure state satisfies ρ = ρ2, i.e. the purity Tr(ρ2) equals 1. For a pure 
state |ψ〉, the dimension of the support is 1, which means only one eigenvalue is non-zero (it 
has to be 1 since Trρ = 1), with which the corresponding eigenstate is |ψ〉. For pure states, the 
QFIM can be obtained as follows.

Theorem 2.5. The entries of the QFIM for a pure parameterized state |ψ〉 := |ψ(�x)〉 can 
be obtained as [1, 2]

Fab = 4Re(〈∂aψ|∂bψ〉 − 〈∂aψ|ψ〉〈ψ|∂bψ〉). (25)

The QFI for the parameter xa is just the diagonal element of the QFIM, which is given by

Faa = 4(〈∂aψ|∂aψ〉 − |〈∂aψ|ψ〉|2), (26)

and the SLD operator corresponding to xa is La = 2 (|ψ〉〈∂aψ|+ |∂aψ〉〈ψ|).

The SLD formula is obtained from the fact ρ2 = ρ for a pure state, then ∂aρ = ρ∂aρ+ (∂aρ)ρ. 
Compared this equation  to the definition equation, it can be seen that L = 2∂aρ. A simple 
example is |ψ〉 = e−i

∑
j Hjxjt|ψ0〉 with [Ha, Hb] = 0 for any a and b, here |ψ0〉 denotes the initial 

probe state. In this case, the QFIM reads

Fab = 4t2cov|ψ0〉(Ha, Hb), (27)

where cov|ϕ〉(A, B) denotes the covariance between A and B on |ϕ〉, i.e.

cov|ϕ〉(A, B) :=
1
2
〈ϕ|{A, B}|ϕ〉 − 〈ϕ|A|ϕ〉〈ϕ|B|ϕ〉. (28)

A more general case where Ha and Hb do not commute will be discussed in section 2.3.4.

2.3.3. Few-qubit states. The simplest few-qubit system is the single-qubit system. A sin-
gle-qubit pure state can always be written as cos θ|0〉+ sin θeiφ|1〉 ({|0〉, |1〉} is the basis), 
i.e. it only has two degrees of freedom, which means only two independent parameters 
(�x = (x0, x1)

T) can be encoded in a single-qubit pure state. Assume θ, φ are the parameters to 
be estimated, the QFIM can then be obtained via equation (25) as

Fθθ = 4, Fφφ = sin2(2θ), Fθφ = 0. (29)

If the unknown parameters are not θ,φ, but functions of θ,φ, the QFIM can be obtained from 
formula above with the assistance of Jacobian matrix.

For a single-qubit mixed state, when the number of encoded parameters is larger than three, 
the determinant of QFIM would be zero, indicating that these parameters cannot be simulta-
neously estimated. This is due to the fact that there only exist three degrees of freedom in a 
single-qubit mixed state, thus, only three or fewer independent parameters can be encoded 
into the density matrix ρ . However, more parameters may be encoded if they are not independ-
ent. Since ρ  here only has two eigenvalues λ0 and λ1, equation (13) then reduces to

Fab =
(∂aλ0)(∂bλ0)

λ0(1 − λ0)
+ 4(1 − 2λ0)

2Re (〈∂aλ0|λ1〉〈λ1|∂bλ0〉) . (30)
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In the case of single qubit, equation (30) can also be written in a basis-independent formula 
[46] below.

Theorem 2.6. The basis-independent expression of QFIM for a single-qubit mixed state ρ  
is of the following form

Fab = Tr [(∂aρ)(∂bρ)] +
1

det(ρ)
Tr [ρ(∂aρ)ρ(∂bρ)] , (31)

where det(ρ) is the determinant of ρ . For a single-qubit pure state, Fab = 2Tr[(∂aρ)(∂bρ)].

Equation (31) is the reduced form of the one given in [46]. The advantage of the basis-inde-
pendent formula is that the diagonalization of the density matrix is avoided. Now we show an 
example for single-qubit. Consider a spin in a magnetic field which is in the z-axis and suffers 
from dephasing noise also in the z-axis. The dynamics of this spin can then be expressed by

∂tρ = −i[Bσz, ρ] +
γ

2
(σzρσz − ρ), (32)

where σz is a Pauli matrix. B is the amplitude of the field. Take B and γ  as the parameters to 
be estimated. The analytical solution for ρ(t) is

ρ(t) =
(

ρ00(0) ρ01(0)e−i2Bt−γt

ρ10(0)ei2Bt−γt ρ11(0)

)
. (33)

The derivatives of ρ(t) on both B and γ  are simple in this basis. Therefore, the QFIM can be 
directly calculated from equation (31), which is a diagonal matrix (FBγ = 0) with the diago-
nal entries

FBB = 16|ρ01(0)|2e−2γtt2, (34)

Fγγ =
4ρ00(0)ρ11(0)|ρ01(0)|2t2

ρ00(0)ρ11(0)e2γt − |ρ01(0)|2
. (35)

For a general two-qubit state, the calculation of QFIM requires the diagonalization of a 4 
by 4 density matrix, which is difficult to solve analytically. However, some special two-qubit 
states, such as the X state, can be diagonalized analytically. An X state has the form (in the 
computational basis {|00〉, |01〉, |10〉, |11〉}) of

ρ =




ρ00 0 0 ρ03

0 ρ11 ρ12 0
0 ρ21 ρ22 0
ρ30 0 0 ρ33


 . (36)

By changing the basis into {|00〉, |11〉, |01〉, |10〉}, this state can be rewritten in the block 
diagonal form as ρ = ρ(0) ⊕ ρ(1), where ⊕ represents the direct sum and

ρ(0) =

(
ρ00 ρ03

ρ30 ρ33

)
, ρ(1) =

(
ρ11 ρ12

ρ21 ρ22

)
. (37)

Note that ρ(0) and ρ(1) are not density matrices as their trace is not normalized. The QFIM for 

this block diagonal state can be written as Fab = F (0)
ab + F (1)

ab  [36], where F (0)
ab  (F (1)

ab ) is the 

QFIM for ρ(0) (ρ(1)). The eigenvalues of ρ(i) are λ(i)
± = 1

2

(
Trρ(i) ±

√
Tr2ρ(i) − 4 det ρ(i)

)
 and 

corresponding eigenstates are
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|λ(i)
± 〉 = N (i)

±

(
1

2Tr(ρ(i)σ+)

[
Tr

(
ρ(i)σz

)
±
√

Tr2ρ(i) − 4 det ρ(i)

]
, 1
)T

,

 (38)

for non-diagonal ρ(i) with N (i)
±  (i = 0, 1) the normalization coefficient. Here the specific form 

of σz and σ+ are

σz =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
. (39)

Based on above information, F (i)
ab  can be specifically written as

F (i)
ab =

∑
k=±

(∂aλ
(i)
k )(∂bλ

(i)
k )

λ
(i)
k

+ λ
(i)
k Fab

(
|λ(i)

k 〉
)

− 16 det ρ(i)

Trρ(i) Re(〈∂aλ
(i)
+ |λ(i)

− 〉〈λ(i)
− |∂bλ

(i)
+ 〉),

 

(40)

where Fab(|λ(i)
k 〉) is the QFIM entry for the state |λ(i)

k 〉. For diagonal ρ(i), |λ(i)
± 〉 is just (0, 1)T  

and only the classical contribution term remains in above equation.

2.3.4. Unitary processes. Unitary processes are the most fundamental dynamics in quantum 
mechanics since it can be naturally obtained via the Schrödinger equation. For a �x -dependent 
unitary process U = U(�x), the parameterized state ρ  can be written as ρ = Uρ0U†, where ρ0 is 
the initial probe state which is �x -independent. For such a process, the QFIM can be calculated 
via the following theorem.

Theorem 2.7. For a unitary parametrization process U, the entry of QFIM can be obtained 
as [48]

Fab =
∑
ηi∈S

4ηicov|ηi〉(Ha,Hb)

−
∑

ηi,ηj∈S,i�=j

8ηiηj

ηi + ηj
Re (〈ηi|Ha|ηj〉〈ηj|Hb|ηi〉) ,

 (41)

where ηi and |ηi〉 are ith eigenvalue and eigenstate of the initial probe state ρ0. cov|ηi〉(Ha,Hb) 
is defined in equation (28). The operator Ha is defined as [49, 50]

Ha := i
(
∂aU†)U = −iU† (∂aU) . (42)

Ha is a Hermitian operator for any parameter xa due to above definition.
For the unitary processes, the parameterized state will remain pure for a pure probe state. 

The QFIM for this case is given as follows.

Corollary 2.7.1. For a unitary process U with a pure probe state |ψ0〉, the entry of QFIM 
is in the form

Fab = 4cov|ψ0〉(Ha,Hb), (43)

where cov|ψ0〉(Ha,Hb) is defined by equation (28) and the QFI for xa can then be obtained 
as Faa = 4var|ψ0〉(Ha). Here var|ψ0〉(Ha) := cov|ψ0〉(Ha,Ha) is the variance of Ha on |ψ0〉.
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For a single-qubit mixed state ρ0 under a unitary process, the QFIM can be written as

Fab = 4
[
2Tr(ρ2

0)− 1
]

cov|η0〉(Ha,Hb) (44)

with |η0〉 an eigenstate of ρ0. This equation is equivalent to

Fab = 4
[
2Tr(ρ2

0)− 1
]

Re (〈η0|Ha|η1〉〈η1|Hb|η0〉) . (45)

The diagonal entry reads Faa = 4
[
2Tr(ρ2

0)− 1
]
|〈η0|Ha|η1〉|2. Recall that theorem 2.6 pro-

vides the basis-independent formula for single-qubit mixed state, which leads to the next 
corollary.

Corollary 2.7.2. For a single-qubit mixed state ρ0 under a unitary process, the basis-inde-
pendent formula of QFIM is

Fab = Tr(ρ2
0{Ha,Hb})− 2Tr(ρ0Haρ0Hb)

+
1

det ρ0

[
Tr

(
ρ0Haρ0

{
ρ2

0,Hb
})

− 2Tr(ρ2
0Haρ

2
0Hb)

]
.

 (46)

The diagonal entry reads

Faa = 2Tr(ρ2
0H2

a)− 2Tr[(ρ0Ha)
2]

+
2

det ρ0

[
Tr

(
ρ0Haρ

3
0Ha

)
− Tr[(ρ2

0Ha)
2]
]

.
 (47)

Under the unitary process, the QFIM for pure probe states, as given in equation (1), can be 
rewritten as

Fab =
1
2
〈ψ0| {La,eff, Lb,eff} |ψ0〉, (48)

where La,eff := U†LaU can be treated as an effective SLD operator, which leads to the follow-
ing theorem.

Theorem 2.8. Given a unitary process, U, with a pure probe state, |ψ0〉, the effective SLD 
operator La,eff can be obtained as

La,eff = i2 [Ha, |ψ0〉〈ψ0|] . (49)

In equation  (41), all the information of the parameters is involved in the operator set 
{Ha}, which might benefit the analytical optimization of the probe state in some scenar-
ios. Generally, the unitary operator can be written as exp(−itH) where H = H(�x) is a time-  
independent Hamiltonian for the parametrization. Ha can then be calculated as

Ha = −
∫ t

0
eisH (∂aH) e−isHds, (50)

where the technique ∂xeA =
∫ 1

0 esA∂xAe(1−s)Ads (A is an operator) is applied. Denote 
H×(·) := [H, ·], the expression above can be rewritten in an expanded form [48]

Ha = −
∞∑

n=0

tn+1

(n + 1)!
(
iH×)n

∂aH. (51)
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In some scenarios, the recursive commutations in expression above display certain pat-
terns, which can lead to analytic expressions for the H operator. The simplest example is 
H =

∑
a xaHa , with all Ha commute with each other. In this case Ha = −tHa since only the 

zeroth order term in equation (51) is nonzero. Another example is the interaction of a collective 
spin system with a magnetic field with the Hamiltonian H = −BJ�n0 , where B is the ampl itude 

of the external magnetic field, J�n0 = �n0 ·�J  with �n0 = (cos θ, 0, sin θ) and �J = (Jx, Jy, Jz). θ is 

the angle between the field and the collective spin. Ji =
∑

k σ
(k)
i /2 for i = x, y, z  is the collec-

tive spin operator. σ(k)
i  is the Pauli matrix for kth spin. In this case, the H operator for θ can be 

analytically calculated via equation (51), which is [48]

Hθ = −2 sin
(

1
2

Bt
)

J�n1 , (52)

where Jn1 = �n1 ·�J  with �n1 = (cos(Bt/2) sin θ, sin(Bt/2),− cos(Bt/2) cos θ).
Recently, Sidhu and Kok [51, 52] use this H-representation to study the spatial deforma-

tions, epecially the grid deformations of classical and quantum light emitters. By calculating 
and analyzing the QFIM, they showed that the higher average mode occupancies of the clas-
sical states performs better in estimating the deformation when compared with single photon 
emitters.

An alternative operator that can be used to characterize the precision limit of unitary pro-
cess is [50, 53, 54]

Ka := i (∂aU)U† = −iU
(
∂aU†) . (53)

As a matter of fact, this operator is the infinitesimal generator of U of parameter xa. Assume 
�x  is shifted by dxa along the direction of xa and other parameters are kept unchanged. Then 
U(�x + dxa) can be expanded as U(�x + dxa)∂aU(�x). The density matrix ρ�x+dxa can then be 
approximately calculated as ρ�x+dxa = e−iKadxaρeiKadxa  [53], which indicates that Ka is the gen-
erator of U along parameter xa. The relation between Ha and Ka can be easily obtained as

Ka = −UHaU†. (54)

With this relation, the QFIM can be easily rewritten with Ka as

Fab =
∑
λi∈S

4λicov|λi〉(Ka,Kb)

−
∑

λi,λj∈S,i�=j

8λiλj

λi + λj
Re (〈λi|Ka|λj〉〈λj|Kb|λi〉) ,

 
(55)

where |λi〉 = U|ηi〉 is the ith eigenstate of the parameterized state ρ . And cov|λi〉(Ka,Kb) is 
defined by equation  (28). The difference between the calculation of QFIM with {Ka} and 
{Ha} is that the expectation is taken with the eigenstate of the probe state ρ0 for the use of 
{Ha} but with the parameterized state ρ  for {Ka}. For a pure probe state |ψ0〉, the expression 
above reduces to Fab = 4cov|ψ〉(Ka,Kb) with |ψ〉 = U|ψ0〉. Similarly, for a mixed state of 
single qubit, the QFIM reads Fab = 4

(
2Trρ2

0 − 1
)

cov|λ0〉(Ka,Kb).

2.3.5. Gaussian states. Gaussian state is a widely-used quantum state in quantum physics, 
particularly in quantum optics, quantum metrology and continuous variable quantum infor-
mation processes. Consider a m-mode bosonic system with ai (a

†
i ) as the annihilation (cre-

ation) operator for the ith mode. The quadrature operators are [55, 56] q̂i := 1√
2
(ai + a†

i ) and 
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p̂i := 1
i
√

2
(ai − a†i ), which satisfy the commutation relation [q̂i, p̂j] = iδij (� = 1). A vector of 

quadrature operators, �R = (q̂1, p̂1, ..., q̂m, p̂m)
T satisfies

[Ri, Rj] = iΩij (56)

for any i and j  where Ω is the symplectic matrix defined as Ω := iσ⊕m
y  where ⊕ denote 

the direct sum. Now we introduce the covariance matrix C(�R) with the entries defined as 
Cij := covρ(Ri, Rj) =

1
2 Tr(ρ{Ri, Rj})− Tr(ρRi)Tr(ρRj). C satisfies the uncertainty relation 

C + i
2Ω � 0 [57, 58]. According to the Williamson’s theorem, the covariance matrix can be 

diagonalized utilizing a symplectic matrix S [58, 59], i.e.

C = SCdST, (57)

where Cd =
⊕m

k=1 ck 2 with ck the kth symplectic eigenvalue and 2 is a 2-dimensional iden-
tity matrix. S is a 2m-dimensional real matrix which satisfies SΩST = Ω.

A very useful quantity for Gaussian states is the characteristic function

χ(�s) = Tr
(
ρ ei�R TΩ�s

)
, (58)

where �s  is a 2m-dimensional real vector. Another powerful function is the Wigner function, 
which can be obtained by taking the Fourier transform of the characteristic function

W(�R) =
1

(2π)2m

∫

R2m
e−i�R TΩ�s χ(�s) d2m�s. (59)

Considering the scenario with first and second moments, a state is a Gaussian state if χ(�s) and 
W(�R) are Gaussian, i.e. [55, 56, 58, 60, 61]

χ(�s) = e−
1
2�s

TΩCΩT�s−i(Ω〈�R〉)T�s, (60)

W(�R) =
1

(2π)m
√
detC

e−
1
2 (�R−〈�R〉)

T
C−1(�R−〈�R〉), (61)

where 〈�R〉j = Tr(Rjρ) is the first moment. A pure state is Gaussian if and only if its Wigner 
function is non-negative [58].

The study of QFIM for Gaussian states started from the research of QFI. The expression 
of QFI was first given in 2013 by Monras for the multi-mode case [62] and Pinel et al for the 
single-mode case [63]. In 2018, Nichols et al [65] and Šafránek [66] provided the expression 
of QFIM for multi-mode Gaussian states independently, which was obtained based on the 
calculation of SLD [7]. The SLD operator for Gaussian states has been given in [62, 65, 67], 
and we organize the corresponding results in the following theorem.

Theorem 2.9. For a continuous variable bosonic m-mode Gaussian state with the dis-
placement vector (first moment) 〈�R〉 and the covariance matrix (second moment) C, the SLD 
operator is [62, 64–67, 69]

La = L(0)
a 2m + �L(1),T

a
�R + �R TGa�R, (62)

where 2m is the 2m-dimensional identity matrix and the coefficients read

Ga =

m∑
j,k=1

3∑
l=0

g( jk)
l

4cjck + (−1)l+1

(
ST)−1

A( jk)
l S−1, (63)
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�L(1)
a = C−1(∂a〈�R〉)− 2Ga〈�R〉, (64)

L(0)
a = 〈�R〉TGa〈�R〉 − (∂a〈�R〉)TC−1〈�R〉 − Tr(GaC). (65)

Here

A( jk)
l =

1√
2

iσ( jk)
y ,

1√
2
σ( jk)

z ,
1√
2

( jk)
2 ,

1√
2
σ( jk)

x (66)

for l = 0, 1, 2, 3 and g( jk)
l = Tr[S−1(∂aC)(ST)−1A( jk)

l ]. σ( jk)
i  is a 2m-dimensional matrix with 

all the entries zero expect a 2 × 2 block, shown as below

σ
( jk)
i =




1st · · · kth · · ·
1st 02×2 02×2 02×2 02×2
... 02×2

...
...

...
jth 02×2 · · · σi · · ·
...

...
...

...
...




, (67)

where 02×2  represents a 2 by 2 block with zero entries. ( jk)
2  is similar to σ( jk)

i  but replace the 
block σi with 2

9.

Being aware of the expression of SLD operator given in theorem 2.9, the QFIM can be 
calculated via equation (1). Here we show the result explicitly in following theorem.

Theorem 2.10. For a continuous variable bosonic m-mode Gaussian state with the dis-
placement vector (first moment) 〈�R〉 and the covariance matrix (second moment) C, the entry 
of QFIM can be expressed by [64–66]

Fab = Tr (Ga∂bC) + (∂a〈�R〉T)C−1∂b〈�R〉, (68)

and the QFI for an m-mode Gaussian state with respect to xa can be immediately obtained as 
[62]

Faa = Tr (Ga∂aC) + (∂a〈�R〉T)C−1∂a〈�R〉. (69)

The expression of right logarithmic derivative for a general Gaussian state and the corre-
sponding QFIM was provided by Gao and Lee [64] in 2014, which is an appropriate tool 
for the estimation of complex numbers [25], such as the number α of a coherent state |α〉. 
The simplest case is a single-mode Gaussian state. For such a state, Ga can be calculated as 
following.

Corollary 5. For a single-mode Gaussian state Ga can be expressed as10

Ga =
4c2 − 1
4c2 + 1

Ω(∂aJ)Ω, (70)

where c =
√
detC  is the symplectic eigenvalue of C and

9 The derivation of this theorem is in appendix E.1.
10 The derivation of this corollary is in appendix E.2.
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J =
1

4c2 − 1
C. (71)

For pure states, detC  is a constant, Ga then reduces to

Ga =
1

4c2 + 1
Ω(∂aC)Ω. (72)

From this Ga, �L
(1)
a  and L(0)

a  can be further obtained, which can be used to obtain the SLD 
operator via equation (62) and the QFIM via equation (68).

Another widely used method to obtain the QFI for Gaussian states is through the fidelity 
(see section 2.4.2 for the relation between fidelity and QFIM). The QFI for pure Gaussian 
states is studied in [68]. The QFI for single-mode Gaussian states has been obtained through 
the fidelity by Pinel et al in [63], and for two-mode Gaussian states by Šafránek et al in [69] 
and Marian et al [70] in 2016, based on the expressions of the fidelity given by Scutaru [71] 
and Marian et al in [72]. The expressions of the QFI and the fidelity for multi-mode Gaussian 
states are given by Monras [62], Safranek et al [69] and Banchi et al [73], and reproduced 
by Oh et al [74] with a Hermitian operator related to the optimal measurement of the fidelity.

There are other approaches, such as the exponential state [76], Husimi Q function [77], that 
can obtain the QFI and the QFIM for some specific types of Gaussian states. Besides, a general 
method to find the optimal probe states to optimize the QFIM of Gaussian unitary channels is 
also provided by Šafránek and Fuentes in [78], and Matsubara et al [75] in 2019. Matsubara 
et al performed the optimization of the QFI for Gaussian states in a passive linear optical cir-
cuit. For a fixed total photon number, the optimal Gaussian state is proved to be a single-mode 
squeezed vacuum state and the optimal measurement is a homodyne measurement.

2.4. QFIM and geometry of quantum mechanics

2.4.1. Fubini-study metric. In quantum mechanics, the pure states is a normalized vector 
because of the basic axiom that the norm square of its amplitude represents the probability. 
The pure states thus can be represented as rays in the projective Hilbert space, on which 
Fubini–Study metric is a Kähler metric. The squared infinitesimal distance here is usually 
expressed as [79]

ds2 =
〈dψ|dψ〉
〈ψ|ψ〉

− 〈dψ|ψ〉〈ψ|dψ〉
〈ψ|ψ〉2 .

 (73)
As 〈ψ|ψ〉 = 1 and |dψ〉 =

∑
µ |∂xµψ〉dxµ, ds2 can be expressed as

ds2 =
∑
µν

1
4
Fµνdxµdxν , (74)

here Fµν  is the µν  element of the QFIM. This means the Fubini–Study metric is a quarter of 
the QFIM for pure states. This is the intrinsic reason why the QFIM can depict the precision 
limit. Intuitively, the precision limit is just a matter of distinguishability. The best precision 
means the maximum distinguishability, which is naturally related to the distance between the 
states. The counterpart of Fubini-study metric for mixed states is the Bures metric, a well-
known metric in quantum information and closely related to the quantum fidelity, which will 
be discussed below.
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2.4.2. Fidelity and Bures metric. In quantum information, the fidelity f (ρ1, ρ2) quantifies the 
similarity between two quantum states ρ1 and ρ2, which is defined as [80]

f (ρ1, ρ2) := Tr
√√

ρ1ρ2
√
ρ1. (75)

Here f ∈ [0, 1] and f   =  1 only when ρ1 = ρ2. Although the fidelity itself is not a distance mea-
sure, it can be used to construct the Bures distance, denoted as DB, as [80]

D2
B(ρ1, ρ2) = 2 − 2f (ρ1, ρ2). (76)

The relationship between the fidelity and the QFIM has been well studied in the literature [30, 
31, 81–84]. In the case that the rank of ρ(�x) is unchanged with the varying of �x , the QFIM is 
related to the infinitestmal Bures distance in the same way as the QFIM related to the Fubini-
study metric11

D2
B(ρ(�x), ρ(�x + d�x)) =

1
4

∑
µν

Fµνdxµdxν . (77)

In recent years it has been found that the fidelity susceptibility, the leading order (the sec-
ond order) of the fidelity, can be used as an indicator of the quantum phase transitions [18]. 
Because of this deep connection between the Bures metric and the QFIM, it is not surprising 
that the QFIM can be used in a similar way. On the other hand, the enhancement of QFIM at 
the critical point indicates that the precision limit of the parameter can be improved near the 
phase transition, as shown in [85, 86].

In the case that the rank of ρ(�x) does not equal to that of ρ(�x + d�x), Šafránek recently 
showed [87] that the QFIM does not exactly equal to the fidelity susceptibility. Later, Seveso 
et al further suggested [88] that the quantum Cramér–Rao bound may also fail at those points.

Besides the Fubini–Study metric and the Bures metric, the QFIM is also closely connected 
to the Riemannian metric due to the fact that the state space of a quantum system is actually 
a Riemannian manifold. In more concrete terms, the QFIM belongs to a family of contractive 
Riemannian metric [24, 26, 89, 90], associated with which the infinitesimal distance in state 
space is ds2 =

∑
µ gµνdxµdxν with gµν as the contractive Riemannian metric. In the eigenba-

sis of the density matrix ρ , gµν takes the form as [91–93]

gµν =
1
4

∑
i

〈λi|dρ|λi〉2

λi
+

1
2

∑
i<j

|〈λi|dρ|λj〉|2

λjh(λi/λj)
, (78)

where h(·) is the Morozova–Čencov function, which is an operator monotone (for any posi-
tive semi-definite operators), self inverse (xh(1/x) = 1/h(x)) and normalized (h(1) = 1) real 
function. When h(x) = (1 + x)/2, the metric above reduces to the QFIM (based on the SLD). 
The QFIMs based on right and left logarithmic derivatives can also be obtained by taking 
h(x) = x and h(x) = 1. The Wigner–Yanase information metric can be obtained from it by 
taking h(x) = 1

4 (
√

x + 1)2.

2.4.3. Quantum geometric tensor. The quantum geometric tensor originates from a complex 
metric in the projective Hilbert space, and is a powerful tool in quantum information science 
that unifies the QFIM and the Berry connection. For a pure state |ψ〉 = |ψ(�x)〉, the quantum 
geometric tensor Q is defined as [23, 95]

11 The derivation is given in appendix F.
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Qµν = 〈∂µψ|∂νψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉. (79)

Recall the expression of QFIM for pure states, given in equation (25), the real part of Qµν  is 
actually the QFIM up to a constant factor, i.e.

Re(Qµν) =
1
4
Fµν . (80)

In the mean time, due to the fact that

(〈∂µψ|ψ〉〈ψ|∂νψ〉)∗ = 〈ψ|∂µψ〉〈∂νψ|ψ〉 = 〈∂µψ|ψ〉〈ψ|∂νψ〉, (81)

i.e. 〈∂µψ|ψ〉〈ψ|∂νψ〉 is real, the imaginary part of Qµν  then reads

Im(Qµν) = Im(〈∂µψ|∂νψ〉) = −1
2
(∂µAν − ∂νAµ) , (82)

where Aµ := i〈ψ|∂µψ〉 is the Berry connection [96] and Υµν := ∂µAν − ∂νAµ is the Berry 
curvature. The geometric phase can then be obtained as [97]

φ =

∮
Aµdxµ, (83)

where the integral is taken over a closed trajectory in the parameter space.
Recently, Guo et  al [98] connected the QFIM and the Berry curvature via the 

Robertson uncertainty relation. Specifically, for a unitary process with two parameters, 
Υµν = i〈ψ0|[Hµ,Hν ]|ψ0〉 with Hµ defined in equation (42) and |ψ0〉 the probe state, the deter-
minants of the QFIM and the Berry curvature should satisfy

detF + 4 detΥ � 0. (84)

2.5. QFIM and thermodynamics

The density matrix of a quantum thermal state is

ρ =
1
Z

e−βH , (85)

where Z = Tr(e−βH) is the partition function and β = 1/(kBT). kB is the Boltzmann constant 
and T is the temperature. For such state we have ∂Tρ = 1

T2 (〈H〉 − H) ρ, where we have set 
kB = 1. If we take the temperature as the unknown parameter, the SLD, which is the solution 
to ∂Tρ = 1

2 (ρLT + LTρ), can then be obtained as

LT =
1

T2 (〈H〉 − H) , (86)

which commutes with ρ . The QFI for the temperature hence reads

FTT =
1

T4 (〈H
2〉 − 〈H〉2), (87)

i.e. FTT  is proportional to the fluctuation of the Hamiltonian. Compared to the specific heat 

Cv = ∂T〈H〉
∂T = 1

T2 (〈H2〉 − 〈H〉2), we have [18, 82, 99–101]

FTT =
1

T2 Cv, (88)
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i.e. for a quantum thermal state, the QFI for the temperature is proportional to the specific heat 
of this system. For a system of which the Hamiltonian has no interaction terms, the relation 
above still holds for its subsystems [102].

The correlation function is an important concept in quantum physics and condensed mat-
ter physics due to the wide applications of the linear response theory. It is well known that 
the static susceptibility between two observables A and B, which represents the influence 
of 〈A〉’s perturbation on 〈B〉 under the thermal equilibrium, is proportional to the canoni-

cal correlation 1
β

∫ β

0
1
Z Tr(e−βHesHAe−sHB)ds [103], which can be further written into ∫ 1

0 Tr(ρsAρ1−sB)ds. Denote 
∫ 1

0 ρsL̃aρ
1−sds = ∂aρ and replace A, B with L̃a and L̃b, the canon-

ical correlation reduces to the so-called Bogoliubov–Kubo–Mori Fisher information matrix ∫ 1
0 ρsL̃aρ

1−sL̃bds [27, 104–107]. However, this relation does not suggest how to connect the 
linear response function with the QFIM based on SLD. In 2007, You et al [18, 108] first stud-
ied the connection between the fidelity susceptibility and the correlation function, and then 
in 2016, Hauke et al [109] extended this connection between the QFI and the symmetric and 
asymmetric correlation functions to the thermal states. Here we use their methods to establish 
the relation between the QFIM and the cross-correlation functions.

Consider a thermal state corresponding to the Hamiltonian H =
∑

a xaOa , where Oa is a 
Hermitian generator for xa and [Oa, Ob] = 0 for any a and b, the QFIM can be expressed as12

Fab =
4
π

∫ ∞

−∞
tanh2

( ω

2T

)
Re(Sab(ω))dω, (89)

or equivalently,

Fab =
4
π

∫ ∞

−∞
tanh

( ω

2T

)
Im(χab(ω))dω. (90)

Here Sab(ω) is the symmetric cross-correlation spectrum defined as

Sab(ω) =

∫ ∞

−∞

1
2
〈{Qa(t), Ob}〉eiωtdt, (91)

where 〈·〉 = Tr(ρ·) and Oa(b)(t) = eiHtOa(b)e−iHt. Its real part can also be written as

Re(Sab(ω)) =

∫ ∞

−∞

1
2
〈Qa(t)Ob + Ob(t)Oa〉eiωtdt. (92)

χab  is the asymmetric cross-correlation spectrum defined as

χab(ω) =

∫ ∞

−∞

i
2
〈[Oa(t), Ob]〉eiωtdt. (93)

Because of equations (89) and (90), and the fact that Sab(ω) and χab(ω) can be directly mea-
sured in the experiments [110–114], Fab becomes measurable in this case, which breaks 
the previous understanding that QFI is not observable since the fidelity is not observable. 
Furthermore, due to the fact that the QFI is a witness for multipartite entanglement [22], 
and a large QFI can imply Bell correlations [115], equations (89) and (90) provide an exper-
imentally-friendly way to witness the quantum correlations in the thermal systems. As a mat-
ter of fact, Shitara and Ueda [94] showed that the relations in equations (89) and (90) can be 

12 The details of the derivation can be found in appendix G.
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further extended to the family of metric described in equation (78) by utilizing the generalized 
fluctuation-dissipation theorem.

2.6. QFIM in quantum dynamics

Quantum dynamics is not only a fundamental topic in quantum mechanics, but also widely 
connected to various topics in quantum information and quantum technology. Due to some 
excellent mathematical properties, the QFIM becomes a good candidate for the characteriza-
tion of certain behaviors and phenomena in quantum dynamics. In the following we show the 
roles of QFIM in quantum speed limit and the characterization of non-Markovianity.

2.6.1. Quantum speed limit. Quantum speed limit aims at obtaining the smallest evolution 
time for quantum processes [6, 49, 93, 116–121]. It is closely related to the geometry of 
quantum states since the dynamical trajectory with the minimum evolution time is actually the 
geodesic in the state space, which indicates that the QFIM should be capable to quantify the 
speed limit. As a matter of fact, the QFI and the QFIM have been used to bound the quantum 
speed limit in recent studies [6, 49, 116, 117]. For a unitary evolution, U = exp(−iHt), to 
steer a state away from the initial position with a Bures angle DB = arccos( f ) (f  is the fidelity 
defined in equation (75)), the evolution time t needs to satisfy [6, 49, 122]

t �
2DB√
Ftt

, (94)

where Ftt  is the QFI for the time t. For a more general case, that the Hamiltonian is time-
dependent, Taddei et al [49] provided an implicit bound based on the QFI,

√
1
2

d2D( f )
df 2

(
dD
df

)−3
∣∣∣∣∣
f→1

D( f (ρ(0), ρ(t))) �
∫ t

0

√
Fττ

4
dτ , (95)

where D is any metric on the space of quantum states via the fidelity f . In 2017, Beau and del 
Campo [123] discussed the nonlinear metrology of many-body open systems and established 
the relation between the QFI for coupling constants and the quantum speed limit, which indi-
cates that the quantum speed limit directly determines the amplitude of the estimation error 
in such cases.

Recently, Pires et al [93] established an infinite family of quantum speed limits based on a 
contractive Riemannian metric discussed in section 2.4.2. In the case that �x  is time-dependent, 
i.e. �x = �x(t), the geodesic distance D(ρ0, ρt) gives a lower bound of general trajectory,

D(ρ0, ρt) �
∫ t

0

(
ds
dt

)
dt =

∫ t

0
dt

√∑
µν

gµν
dxµ
dt

dxν
dt

, (96)

where gµν is defined in equation (78). Taking the maximum Morozova–Čencov function, the 
above inequality leads to the quantum speed limit with time-dependent parameters given in 
[49].

2.6.2. Non-Markovianity. Non-Markovianity is an emerging concept in open quantum sys-
tems. Many different quantification of the non-Markovianity based on monotonic quantities 
under the completely positive and trace-preserving maps have been proposed [124–126]. The 
QFI can also be used to characterize the non-Markovianity since it also satisfies the monoto-
nicity [6]. For the master equation
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∂tρ = −i[H�x, ρ] +
∑

j

γj(t)
(
ΓjρΓ

†
j −

1
2

{
Γ†

j Γj, ρ
})

, (97)

the quantum Fisher information flow

∂tFaa = −
∑

j

γj(t)Tr
(
ρ[La,Γj]

†[La,Γj]
)

 (98)

given by Lu et al [127] in 2010 is a valid witness for non-Markovianity. Later in 2015, Song 
et al [128] utilized the maximum eigenvalue of average QFIM flow to construct a quantita-
tive measure of non-Markovianity. The average QFIM flow is the time derivative of average 
QFIM F̄ =

∫
Fd�x . Denote λmax(t) as the maximum eigenvalue of ∂tF̄  at time t, then the 

non-Markovianity can be alternatively defined as

N :=
∫

λmax>0
λmaxdt. (99)

One may notice that this is not the only way to define non-Makovianity with the QFIM, simi-
lar constructions would also be qualified measures for non-Markovianity.

3. Quantum multiparameter estimation

3.1. Quantum multiparameter Cramér–Rao bound

3.1.1. Introduction. The main application of the QFIM is in the quantum multiparameter 
estimation, which has shown very different properties and behaviors compared to its single-
parameter counterpart [16]. The quantum multiparameter Cramér–Rao bound, also known 
as Helstrom bound, is one of the most widely used asymptotic bound in quantum metrology  
[1, 2].

Theorem 3.1. For a density matrix ρ  in which a vector of unknown parameters 
�x = (x0, x1, ..., xm, ...)T is encoded, the covariance matrix cov(�̂x, {Πy}) of an unbiased estima-
tor �̂x  under a set of POVM, {Πy}, satisfies the following inequality13

cov(�̂x, {Πy}) �
1
n
I−1({Πy}) �

1
n
F−1, (100)

where I({Πy}) is the CFIM, F  is the QFIM and n is the repetition of the experiment.

The second inequality is called the quantum multiparameter Cramér–Rao bound. In the 
derivation, we assume the QFIM can be inverted, which is reasonable since a singular QFIM 
usually means not all the unknown parameters are independent and the parameters cannot be 
estimated simultaneously. In such cases one should first identify the set of parameters that are 
independent, then calculate the corresponding QFIM for those parameters.

For cases where the number of unknown parameters is large, it may be difficult or even 
meaningless to know the error of every parameter, and the total variance or the average vari-
ance is a more appropriate macroscopic quantity to study. Recall that the ath diagonal entry of 
the covariance matrix is actually the variance of the parameter xa. Thus, the bound for the total 
variance can be immediately obtained as following.

13 The derivation of this theorem is given in appendix H.
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Corollary 3.1.1. Denote var(x̂a, {Πy}) as the variance of xa, then the total variance ∑
a var(xa, {Πy}) is bounded by the trace of F−1, i.e.

∑
a

var(x̂a, {Πy}) �
1
n

Tr
(
I−1({Πy})

)
�

1
n

Tr
(
F−1) . (101)

The inverse of QFIM sometimes is difficult to obtain analytically and one may need a 
lower bound of Tr(F−1) to roughly evaluate the precision limit. Being aware of the property 
of QFIM (given in section 2.1) that [F−1]aa � 1/Faa, one can easily obtain the following 
corollary.

Corollary 3.1.2. The total variance is bounded as

∑
a

var(x̂a, {Πy}) �
1
n

Tr
(
F−1) �

∑
a

1
nFaa

. (102)

The second inequality can only be attained when F  is diagonal. Similarly,

∑
a

var(x̂a, {Πy}) �
1
n

Tr
(
I−1({Πy})

)
�

∑
a

1
nIaa({Πy})

. (103)

The simplest example for the multi-parameter estimation is the case with two parameters. 
In this case, F−1 can be calculated analytically as

F−1 =
1

det(F)

(
Fbb −Fab

−Fab Faa

)
. (104)

Here det(·) denotes the determinant. With this equation, the corollary above can reduce to the 
following form.

Corollary 3.1.3. For two-parameter quantum estimation, corollary 3.1.1 reduces to

∑
a

var(x̂a, {Πy}) �
1

nIeff({Πy})
�

1
nFeff

, (105)

where Ieff({Πy}) = det(I)/Tr(I) and Feff = det(F)/Tr(F) can be treated as effective clas-
sical and quantum Fisher information.

In statistics, the mean error given by 
∑

a var(x̂a, {Πy}) is not the only way for the charac-
terization of mean error. Recently Lu et al [129] considered the generalized-mean, including 
the geometric and harmonic means, and provided the corresponding multiparameter Cramér–
Rao bounds.

3.1.2. Attainability. Attainability is a crucial problem in parameter estimation. An unattainable 
bound usually means the given precision limit is too optimistic to be realized in physics. In clas-
sical statistical estimations, the classical Cramér–Rao bound can be attained by the maximum 
likelihood estimator in the asymptotic limit, i.e. limn→∞ ncov(�̂xm(n)) = I−1, where �̂xm(n) is 
the local maximum likelihood estimator and a function of repetition or sample number, which 
is unbiased in the asymptotic limit. Because of this, the parameter estimation based on Cramér–
Rao bound is an asymptotic theory and requires infinite samples or repetition of the experiment. 
For a finite sample case, the maximum likelihood estimator is not unbiased and the Cramér–
Rao bound may not be attainable as well. Therefore, the true attainability in quantum parameter 
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estimation should also be considered in the sense of asymptotic limit since the attainability of 
quantum Cramér–Rao bound usually requires the QFIM equals the CFIM first. The general 
study of quantum parameter estimation from the asymptotic aspect is not easy, and the recent 
progress can be found in [90] and references therein. Here in the following, the attainability 
majorly refers to that if the QFIM coincides with the CFIM in theory. Besides, another thing 
that needs to emphasize is that the maximum likelihood estimator is optimal in a local sense 
[129], i.e. the estimated value is very close to the true value, and a locally unbiased estimator 
only attains the bound locally but not globally in the parameter space, thus, the attainability and 
optimal measurement discussed below are referred to the local ones.

For the single-parameter quantum estimations, the quantum Cramér–Rao bound can be 
attained with a theoretical optimal measurement. However, for multi-parameter quantum esti-
mation, different parameters may have different optimal measurements, and these optimal 
measurements may not commute with each other. Thus there may not be a common measure-
ment that is optimal for the estimation for all the unknown parameters. The quantum Cramér–
Rao bound for the estimation of multiple parameters is then not necessary attainable, which is 
a major obstacle for the utilization of this bound in many years. In 2002, Matsumoto [131] first 
provided the necessary and sufficient condition of attainability for pure states. After this, its 
generalization to mixed states was discussed in several specific scenarios [28, 132–134] and 
rigorously proved via the Holevo bound firstly with the theory of local asymptotic normality 
[135] and then the direct minimization of one term in Holevo bound [136]. We first show this 
condition in the following theorem.

Theorem 3.2. The necessary and sufficient condition for the saturation of the quantum 
multiparameter Cramér–Rao bound is

Tr (ρ[La, Lb]) = 0, ∀ a, b. (106)

For a pure parameterized state |ψ〉 := |ψ(�x)〉, this condition reduces to

〈ψ|[La, Lb]|ψ〉 = 0, ∀ a, b, (107)

which is equivalent to the form

Im(〈∂aψ|∂bψ〉) = 0. (108)

When this condition is satisfied, the Holevo bound is also attained and equivalent to the 
Cramér–Rao bound [135, 136]. Recall that the Berry curvature introduced in section 2.4.3 is 
of the form

Υab = i∂a(〈ψ|∂bψ〉)− i∂b(〈ψ|∂aψ〉)
= −2Im(〈∂aψ|∂bψ〉).

 (109)

Hence, the above condition can also be expressed as following.

Corollary 3.2.1. The multi-parameter quantum Cramér–Rao bound for a pure parameter-
ized state can be saturated if and only if

Υ = 0, (110)

i.e. the matrix of Berry curvature is a null matrix.

For a unitary process U with a pure probe state |ψ0〉, this condition can be expressed with 
the operator Ha and Hb, as shown in the following corollary [48].
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Corollary 3.2.2. For a unitary process U with a pure probe state |ψ0〉, the necessary and 
sufficient condition for the attainability of quantum multiparameter Cramér–Rao bound is

〈ψ0| [Ha,Hb] |ψ0〉 = 0, ∀ a, b. (111)

Here Ha was introduced in section 2.3.4.

3.1.3. Optimal measurements. The satisfaction of attainability condition theoretically guar-
antees the existence of some CFIM that can reach the QFIM. However, it still requires an 
optimal measurement. The search of practical optimal measurements is always a core mission 
in quantum metrology, and it is for the best that the optimal measurement is independent of the 
parameter to be estimated. The most well studied measurement strategies nowadays include 
the individual measurement, adaptive measurement and collective measurement, as shown 
in figure 3. The individual measurement refers to the measurement on a single copy (figure 
3(a)) or local systems (black lines in figure 3(d)), and can be easily extend the sequential 
scenario (figure 3(c)), which is the most common scheme for controlled quantum metrol-
ogy. The collective measurement, or joint measurement, is the one performed simultaneously 
on multi-copies or on the global system (orange lines in figure 3(d)) in parallel schemes. A 
typical example for collective measurement is the Bell measurement. The adaptive measure-
ment (figure 3(b)) usually uses some known tunable operations to adjust the outcome. A well-
studied case is the optical Mach–Zehnder interferometer with a tunable path in one arm. The 
Mach–Zehnder interferometer will be thoroughly introduced in the next section.

For the single parameter case, a possible optimal measurement can be constructed with the 
eigenstates of the SLD operator. Denote {|li〉〈li|} as the set of eigenstates of La, if we choose 
the set of POVM as the projections onto these eigenstates, then the probability for the ith 
measurement result is 〈li|ρ|li〉. In the case where |li〉 is independent of xa, the CFI then reads

Iaa =
∑

i

〈li|∂aρ|li〉2

〈li|ρ|li〉
. (112)

Due to the equation 2∂aρ = ρLa + Laρ , the equation above reduces to

Iaa =
∑

i

l2i 〈li|ρ|li〉 = Tr(ρL2
a) = Faa, (113)

which means the POVM {|li〉〈li|} is the optimal measurement to attain the QFI. However, 
if the eigenstates of the SLD are dependent on xa, it is no longer the optimal measurement. 
In the case with a high prior information, the CFI with respect to {|li(x̂a)〉〈li(x̂a)|} ( x̂a is the 
estimated value of xa) may be very close to the QFI. In practice, this measurement has to be 
used adaptively. Once we obtain a new estimated value x̂a via the measurement, we need 
to update the measurement with the new estimated value and then perform the next round 
of measurement. For a non-full rank parameterized density matrix, the SLD operator is not 
unique, as discussed in section 2.3.1, which means the optimal measurement constructed via 
the eigenbasis of SLD operator is not unique. Thus, finding a realizable and simple optimal 
measurement is always the core mission in quantum metrology. Update to date, only known 
states in single-parameter estimation that own parameter-independent optimal measurement is 
the so-called quantum exponential family [27, 90], which is of the form

ρ = e
1
2 (

∫ x
0 c(x′)dx′O−

∫ x
0 x′c(x′)dx′)ρ0e

1
2 (
∫ x

0 c(x′)dx′O−
∫ x

0 x′c(x′)dx′), (114)

where c(x) is a function of the unknown parameter x, ρ0 is a parameter-independent density 
matrix, and O is an unbiased observable of x, i.e. 〈O〉 = x. For this family of states, the SLD 
is Lx  =  c(x)(O  −  x) and the optimal measurement is the eigenstates of O.
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For multiparameter estimation, the SLD operators for different parameters may not share 
the same eigenbasis, which means {|li(x̂a)〉〈li(x̂a)|} is no longer an optimal choice for the 
estimation of all unknown parameters, even with the adaptive strategy. Currently, most of 
the studies in multiparameter estimation focus on the construction of the optimal measure-
ments for a pure parameterized state |ψ〉. In 2013, Humphreys et al [152] proposed a method 
to construct the optimal measurement, a complete set of projectors containing the operator 
|ψ�xtrue〉〈ψ�xtrue | (�xtrue is the true value of �x ). Here |ψ�xtrue〉 equals the value of |ψ〉 by taking �x = �xtrue.  
All the other projectors can be constructed via the Gram–Schmidt process. In practice, since 
the true value is unknown, the measurement has to be performed adaptively with the estimated 
values �̂x , similar as the single parameter case. Recently, Pezzè et al [137] provided the spe-
cific conditions this set of projectors should satisfy to be optimal, which is organized in the 
following three theorems.

Theorem 3.3. Consider a parameterized pure state |ψ〉. |ψ�xtrue〉 := |ψ(�x = �xtrue)〉 with �xtrue 
the true value of �x . The set of projectors {|mk〉〈mk|, |m0〉 = |ψ�xtrue〉} is an optimal measure-
ment to let the CFIM reach QFIM if and only if [137]

lim
�x→�xtrue

Im(〈∂aψ|mk〉〈mk|ψ〉)
|〈mk|ψ〉|

= 0, ∀xa and k �= 0, (115)

which is equivalent to

Im(〈∂aψ|mk〉〈mk|∂bψ〉) = 0, ∀xa, xb and k �= 0. (116)

The proof is given in appendix I. This theorem shows that if the quantum Cramér–Rao 
bound can be saturated then it is always possible to construct the optimal measurement with 

Figure 3. Schematics for basic measurement schemes in quantum metrology, including 
individual measurment, adaptive measurement and collective measurement.
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the projection onto the probe state itself at the true value and a suitable choice of vectors on 
the orthogonal subspace [137].

Theorem 3.4. For a parameterized state |ψ〉, the set of projectors {|mk〉〈mk|, 〈ψ|mk〉 �= 0 ∀k} 
is an optimal measurement to let the CFIM reach QFIM if and only if [137]

Im(〈∂aψ|mk〉〈mk|ψ〉) = |〈ψ|mk〉|2Im(〈∂aψ|ψ〉), ∀k, xa. (117)

For the most general case that some projectors are vertical to |ψ〉 and some not, we have 
following theorem.

Theorem 3.5. For a parameterized pure state |ψ〉, assume a set of projectors {|mk〉〈mk|} 
include two subsets A = {|mk〉〈mk|, 〈ψ|mk〉 = 0 ∀k} and B = {|mk〉〈mk|, 〈ψ|mk〉 �= 0 ∀k}, 
i.e. {|mk〉〈mk|} = A ∪ B, then it is an optimal measurement to let the CFIM to reach the QFIM 
if and nly if [137] equation (115) is fulfilled for all the projectors in set A and (117) is fulfilled 
for all the projectors in set B.

Apart from the QFIM, the CFIM is also bounded by a measurement-dependent matrix with 
the abth entry 

∑
k Re[Tr(ρLaΠkLb)] [138], where {Πk} is a set of POVM. Recently, Yang et al 

[138] provided the attainable conditions for the CFIM to attain this bound by generalizing the 
approach in [30].

3.2. Phase estimation in the Mach–Zehnder interferometer

Mach–Zehnder interferometer (MZI) is one of the most important model in quantum technol-
ogy. It was first proposed in 1890th as an optical interferometer, and its quantum description 
was given in 1986 [139]. With the development of quantum mechanics, now it is not only a 
model for optical interferometer, but can also be realized via other systems like spin systems 
and cold atoms. The recently developed gravitational wave detector GEO 600 can also be 
mapped as a MZI in the absence of noise [140]. It is a little bit more complicated when the 
noise is involved, for which a valid bound has been provided by Branford et al [141] and is 
attainable by a frequency-dependent homodyne detection. Phase estimation in MZI is the 
earliest case showing quantum advantages in metrology. In 1981, Caves [142] showed that 
there exists an unused port in the MZI due to quantum mechanics and the vacuum fluctuation 
in that port actually affects the phase precision and limit it to the standard quantum limit (also 
known as shot-noise limit), which is the ultimate limit for a classical apparatus. He continued 
to point out that injecting a squeezed state in the unused port can lead to a high phase precision 
beating the standard quantum limit. This pioneer work proved that quantum technologies can 
be powerful in the field of precision measure, which was experimentally confirmed in [143, 
144]. Since then, quantum metrology has been seeing a rapid development and grown into a 
major topic in quantum technology.

MZI is a two-path interferometer, which generally consists of two beam splitters 
and a phase shift between them, as shown in figure 4(a). In theory, the beam splitters and 
phase shift are unitary evolutions. A 50:50 beam splitter can be theoretically expressed by 
B = exp(−iπ2 Jx) whereJx =

1
2 (â

†b̂ + b̂†â) is a Schwinger operator with ̂a, b̂ (â†, b̂†) the anni-
hilation (creation) operators for two paths. Other Schwinger operators are Jy =

1
2i (â

†b̂ − b̂†â) 
and Jz =

1
2 (â

†â − b̂†b̂). The Schwinger operators satisfy the commutation [Ji, Jj] = i
∑

k εijkJk  
with εijk  the Levi-Civita symbol. The second beam splitter usually takes the form as B†. For 
the standard MZI, the phase shift can be modeled as P = exp(iθJz), which means the entire 
operation of MZI is BPB† = exp(−iθJy), which is a SU(2) rotation, thus, this type of MZI is 
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also referred as SU(2) interferometer. If the input state is a pure state |ψ0〉, the QFI for θ is just 
the variance of Jy  with respect to |ψ0〉, i.e. var|ψ0〉(Jy).

3.2.1. Double-phase estimation. A double-phase MZI consists of two beam splitters and 
a phase shift in each path, as shown in figure  4(b). In this setup, the operator of the two 
phase shifts is P(φa,φb) = exp(i(φaâ†â + φbb̂†b̂)). According to proposition 2.1, the QFIM 
for the phases is not affected by the second beam splitter B† since it is independent of the 
phases. Thus, the second beam splitter can be neglected for the calculation of QFIM. Now take 
φtot = φa + φb and φd = φa − φb as the parameters to be estimated. For a separable input state 
|α〉 ⊗ |χ〉 with |α〉 as a coherent state, the entries of QFIM reads [145]

Fφtot,φtot = |α|2 + var|χ〉(b†b), (118)

Fφd,φd = 2|α|2cov|χ〉(b, b†)− 2Re
(
α2var|χ〉(b†)

)
+ 〈b†b〉, (119)

Fφtot,φd = −iα∗〈b〉 − iIm(α∗(〈b†b2〉 − 〈b†b〉〈b〉)). (120)

Focusing on the maximization of Fφd,φd subject to a constraint of fixed mean photon number 
on b mode, Lang and Caves [145] proved that the squeezed vacuum state is the optimal choice 
for |χ〉 which leads to the maximum sensitivity of φd.

Figure 4. (a) Schematic for a standard Mach–Zehnder interferometer, which generally 
consists of two beam splitters and a phase shift; (b) schematic for a double phase Mach–
Zehnder interferometer in which the phase shifts are put in all two paths. Here we 
emphasize that though the schematic is given in an optical setup, the MZI model can 
also be realized via other systems like spin systems and cold atoms.
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Since Caves already pointed out that the vacuum fluctuation will affect the phase sensitiv-
ity [142], it is then interesting to ask the question that how bad the phase sensitivity could be 
if one input port keeps vacuum? Recently Takeoka et al [146] considered this question and 
gave the answer by proving a no-go theorem stating that in the double phase MZI, if one input 
port is the vacuum state, the sensitivity can never be better than the standard quantum limit 
regardless of the choice of quantum state in the other port and the detection scheme. However, 
this theorem does not hold for a single phase shift scenario in figure 4(a). Experimentally, 
Polino et al [147] recently demonstrated quantum-enhanced double-phase estimation with a 
photonic chip.

Besides the two-phase estimation, another practical two-parameter scenario in interometry 
is the joint measurement of phase and phase diffusion. In 2014, Vidrighin et al [132] provide 
a trade-off bound on the statistical variances for the joint estimation of phase and phase dif-
fusion. Later in 2015, Altorio et al [148] addressed the usefulness of weak measurements in 
this case and in 2018 Hu et al [149] discussed the SU(1,1) interferometry in the presence of 
phase diffusion. In the same year, Roccia et al [150] experimentally showed that some collec-
tive measurement, like Bell measurement, can benefit the joint estimation of phase and phase 
diffusion.

3.2.2. Multi-phase estimation. Apart from double phase estimation, multi-phase estimation is 
also an important scenario in multiparameter estimation. The multi-phase estimation is usually 
considered in the multi-phase interferometer shown in figure 5(a). Another recent review on this 
topic is [16]. In this case, the total variance of all phases is the major concern, which is bounded 
by 1

n Tr(F−1) according to corollary 3.1.1. For multiple phases, the probe state undergoes the 
parameterization, which can be represented by U = exp(i

∑
j xjHj) where Hj  is the generator of 

the j th mode. In the optical scenario, this operation can be chosen as exp(i
∑

j xja
†
j aj) with a†

j  
(aj ) as the creation (annihilation) operator for the j th mode. For a separable state 

∑
k pk

⊗d
i=0 ρ

(i)
k  

where ρ(i)
k  is a state of the ith mode, and p k is the weight with p k  >  0 and 

∑
k pk = 1, the QFI sat-

isfies Fjj � d(hj,max − hj,min)
2 [151] with hj,max (hj,min) as the maximum (minimum) eigenvalue 

of Hj . From corollary 3.1.2, the total variance is then bounded by [151]

∑
j

var(x̂j, {Πy}) �
1
d

d∑
j=1

1
(hj,max − hj,min)2 . (121)

This bound indicates that the entanglement is crucial in the multi-phase estimation to beat the 
standard quantum limit.

N00N state is a well known entangled state in quantum metrology which can saturate the 
Heisenberg limit. In 2013, Humphreys et al [152] discussed a generalized (d + 1)-mode N00N 
state in the form c0|N0〉+ c1

∑
i |Ni〉 where |Ni〉 = |0...0N0...0〉 is the state in which only the 

ith mode corresponds to a Fock state and all other modes are left vacuum. c0 and c1 are real 

coefficients satisfying c2
0 + dc2

1 = 1. The 0-mode is the reference mode and the parametrization 

process is exp(i
∑d

j=1 xja
†
j aj). The generation of this state has been proposed in [153]. Since 

this process is unitary, the QFIM can be calculated via corollary 2.7.1 with Hj = −a†j aj. It is 
then easy to see that the entry of QFIM reads [152] Fij = 4N2(δijc2

1 − c4
1), which further gives

min
c1

Tr(F−1) =
(1 +

√
d)2d

4N2 , (122)

where the optimal c1 is 1/
√

d +
√

d.

J. Phys. A: Math. Theor. 53 (2020) 023001



Topical Review

30

Apart from the scheme in figure 5(a) with the simultaneous estimation, the multi-phase 
estimation can also be performed by estimating the phases independently, using the ith mode 
and the reference mode, as shown in figure 5(b). In this scheme, the phases are estimated 
one by one with the N00N state, which provides the total precision limit d3/N2 [152]. Thus, 
the simultaneous estimation scheme in figure 5(a) shows a O(d) advantage compared to the 
independent scheme in figure 5(b). However, the performance of the simultaneous estimation 
may be strongly affected by the noise [154, 155] and the O(d) advantage may even disappear 
under the photon loss noise [156].

In the single phase estimation, it is known that the entangled coherent state N (|0α〉+ |α0〉) 
(|α〉 is a coherent state and N  is the normalization) can provide a better precision limit than 
the N00N state [157]. Hence, it is reasonable to think the generalization of entangled coherent 
state may also outperform the generalized N00N state. This result was theoretically confirmed 

in [158]. For a generalized entangled coherent state written in the form c0|α0〉+ c1
∑d

j=1 |αj〉 
with |αj〉 = |0...0α0...0〉, the QFIM is Fij = 4|c1|2|α|2[δij(1 + |α|2)− |c1|2|α|2] [158]. For 
most values of d and |α|, the minimum Tr(F−1) can be written as

min
c1

Tr(F−1) =
(1 +

√
d)2d

4(1 + |α|2)2 , (123)

which is smaller than the counterpart of the generalized N00N state, indicating the perfor-
mance of the generalized entangled coherent state is better than the generalized N00N state. 
For a large |α|, the total particle number  ∼|α|2 and the performances of both states basically 
coincide. With respect to the independent scheme, the generalized entangled coherent also 
shows a O(d) advantage in the absence of noise.

Figure 5. Schematics of (a) simultaneous multi-phase estimation and (b) independent 
estimation of multiple phases. 0-mode light is the reference mode. In the independent 
estimation, the phase in the ith mode is estimated via the MZI consisting of 0-mode and 
i-mode lights.
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In 2017, Zhang et  al [159] considered a general balanced state c
∑

j |ψj〉 with 
|ψj〉 = |0...0ψ0...0〉. c is the normalization coefficient. Four specific balanced states: N00N 
state, entangled coherent state, entangled squeezed vacuum state and entangled squeezed 
coherent state, were calculated and they found that the entangled squeezed vacuum state 
shows the best performance, and the balanced type of this state outperforms the unbalanced 
one in some cases.

A linear network is another common structure for multi-phase estimation [160, 161]. 
Different with the structure in figure 5(a), a network requires the phase in each arm can be 
detected independently, meaning that each arm needs a reference beam. The calculation of 
Cramér–Rao bound in this case showed [161] that the linear network for miltiparameter 
metrology behaves classically even though endowed with well-distributed quantum resources. 
It can only achieve the Heisenberg limit when the input photons are concentrated in a small 
number of input modes. Moreover, the performance of a mode-separable state N (|N〉+ v|0〉) 
may also shows a high theoretical precision limit in this case if v ∝

√
d.

Recently, Gessner [162] considered a general case for multi-phase estimation with multi-

mode interferometers. The general Hamiltonian is H =
∑N

j=1 h( j)
k  with h( j)

k  a local Hamiltonian 

for the ith particle in the kth mode. For the particle-separable states, the maximum QFIM is 
a diagonal matrix with the ith diagonal entry 〈ni〉 being the ith average particle number (ni is 
the ith particle number operator). This bound could be treated as the shot-noise limit for the 
multi-phase estimation. For the mode-separable states, the maximum QFIM is also diagonal, 
with the ith entry 〈n2

i 〉, which means the maximum QFIM for mode-separable state is larger 
than the particle-separate counterpart. Taking into account both the particle and mode entan-

glement, the maximum QFIM is in the form Fij = sgn(〈ni〉)sgn(〈nj〉)
√

〈n2
i 〉〈n2

j 〉, which gives 

the Heisenberg limit in this case.
The comparison among the performances of different strategies usually requires the same 

amount of resources, like the same sensing time, same particle number and so on. Generally 
speaking, the particle number here usually refers to the average particle number, which is also 
used to define the standard quantum limit and Heisenberg limit in quantum optical metrology. 
Although the Heisenberg limit is usually treated as a scaling behavior, people still attempt 
to redefine it as an ultimate bound given via quantum mechanics by using the expectation of 
the square of number operator to replace the square of average particle number [163], i.e. the 
variance should be involved in the Heisenberg limit [163, 164] and be treated as a resource.

3.3. Waveform estimation

In many practical problems, like the detection of gravitational waves [141] or the force detec-
tion [165], what needs to be estimated is not a parameter, but a time-varing signal. The QFIM 
also plays an important role in the estimation of such signals, also known as waveform estima-
tion [166]. By discretizing time into small enough intervals, the estimation of a time-contin-
uous signal x(t) becomes the estimation of multiparameters xj ’s. The prior information of the 
waveform has to be taken into account in the estimation problem, e.g. restricting the signal to 
a finite bandwidth, in order to make the estimation error well-defined. The estimation-error 
covariance matrix Σ is then given by

Σjk =

∫
[x̂j(y)− xj][x̂k(y)− xk] dyd�x, (124)
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where d�x =
∏

j dxj and y  denotes the measurement outcome. Tsang proved the most general 
form of Bayesian quantum Cramér-Rao bound

Σ �
(
F (C) + F (Q)

)−1
, (125)

where the classical part

F (C)
ab =

∫
[∂a ln p(�x)][∂b ln p(�x)]p(�x)dx (126)

depends only on the prior information about the vector parameter �x  and the quantum part [29, 
166]

F (Q)
ab =

∫
Re

[
Tr(L̃†

aL̃bρ)
]

p(�x)d�x (127)

depends on the parametric family ρ  of density operators with L̃a being determined via

∂aρ =
1
2
(
L̃aρ+ ρL̃†

a

)
. (128)

Note that L̃a is an extended version of SLD and is not necessary to be Hermitian. When all L̃a’s 
are Hermitian, F (Q) is the average of the QFIM over the prior distribution of �x . L̃a can also be 
anti-Hermiaition [29]. In this case, the corresponding bound is equivalent to the SLD one for 
pure states but a potentially looser one for mixed states. For a unitary evolution, the entire oper-
ator U can be discretized into U = UmUm−1 · · ·U1U0, where Ua = exp(−iH(xa)δt). Denote 

ha = U†
0 U†

1 · · ·U†
a(∂aH)Ua · · ·U1U0  and ∆ha = ha − Tr(ρ0ha) with ρ0 the probe state, the 

quantum part in equation (127) reads [166]

F (Q)
ab = 2(δt)2

∫
Tr ({∆ha,∆hb} ρ0) p(�x)d�x. (129)

Taking the continuous-time limit, it can be rewritten as [166]

F (Q)(t, t′) = 2
∫

Tr ({∆h(t),∆h(t′)} ρ0) p(�x)d�x. (130)

Together with F (C)(t, t′), the fundamental quantum limit to waveform estimation based on 
QFIM is established [166]. The waveform estimation can also be solved with other tools, like 
the Bell–Ziv–Zakai lower bounds [167].

3.4. Control-enhanced multiparameter estimation

The dynamics of many artificial quantum systems, like the Nitrogen-vacancy center, trapped 
ion and superconducting circuits, can be precisely altered by control. Hence, control provides 
another freedom for the enhancement of the precision limit in these apparatuses. It is already 
known that quantum control can help to improve the QFI to the Heisenberg scaling with 
the absence of noise in some scenarios [54, 169–170]. However, like other resources, this 
improvement could be sensitive to the noise, and the performance of optimal control may 
strongly depend on the type of noise [171, 172]. In general, the master equation for a noisy 
quantum system is described by

∂tρ = E�xρ. (131)
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Here E�x  is a �x -dependent superoperator. For the Hamiltonian estimation under control, the 
dynamics is

E�xρ = −i[H0(�x) + Hc, ρ] + Lρ, (132)

where Hc =
∑ p

k=1 Vk(t)Hk is the control Hamiltonian with Hk the kth control and Vk(t) the 
corresponding time-dependent control amplitude. For a general Hamiltonian, the optimal con-
trol can only be tackled via numerical methods. One choice for this problem is the Gradient 
ascent pulse engineering algorithm.

Gradient ascent pulse engineering (GRAPE) algorithm is a gradient-based algorithm, which 
was originally developed to search the optimal control for the design of nuclear magnetic 
resonance pulse sequences [173], and now is extended to the scenario of quantum parameter 
estimation [171, 172]. As a gradient-based method, GRAPE requires an objective function 
and analytical expression of the corresponding gradient. For quantum single-parameter esti-
mation, the QFI is a natural choice for the objective function. Of course, in some specific 
systems the measurement methods might be very limited, which indicates the CFI is a proper 
objective function in such cases. For quantum multiparameter estimation, especially those 
with a large parameter number, it is difficult or even impossible to take into account the error 
of every parameter, and thus the total variance 

∑
a var(x̂a, {Πy}) which represents the average 

error of all parameters, is then a good index to show system precision. According to corol-
lary 3.1.1, Tr(F−1) and Tr(I−1) (for fixed measurement) could be proper objective functions 
for GRAPE if we are only concern with the total variance. For two-parameter estimation, 
Tr(F−1) and Tr(I−1) reduce to the effective QFI Feff  and CFI Ieff  according to corollary 
3.1.3. However, as the parameter number increases, the inverse matrix of QFIM and CFIM are 
difficult to obtain analytically, and consequently superseded objective functions are required. 
(
∑

a Iaa)
−1 or (

∑
a Faa)

−1, based on corollary 3.1.2, is then a possible superseded objective 
function for fixed measurement. However, the use of (

∑
a Faa)

−1 should be very cautious 
since Tr(F−1) cannot always be achievable. The specific expressions of gradients for these 
objective functions in Hamiltonian estimation are given in appendix J.

The flow of the algorithm, shown in figure 6, is formulated as follows [171, 172]:

 (i)  Guess a set of initial values for Vk( j) (Vk( j) is the kth control at the j th time step).
 (ii)  Evolve the dynamics with the controls.
 (iii)  Calculate the objective function. For single-parameter estimation, the objective function 

can be chosen as QFI Faa or CFI Iaa (for mixed measurement). For two-parameter esti-
mation, it can be chosen as Ieff  or Feff . For large parameter number, it can be chosen as 

f0 = 1∑
a I

−1
aa

 or 1∑
a F

−1
aa

.

 (iv)  Calculate the gradient.
 (v)  Update Vk( j) to Vk( j) + ε · gradient  (ε is a small quantity) for all j  simultaneously.
 (vi)  Go back to step (ii) until the objective function converges.

In step (v), all Vk( j) are updated simultaneously in each time of iteration [173], as shown in 
figure 7(a), which could improve the speed of convergence in some cases. However, this paral-
lel update method does not promise the monotonicity of convergence, and the choice of initial 
guess of Vk( j) is then important for a convergent result. The specific codes for this algorithm 
can be found in the package QuanEstimation14.

Krotov’s method is another gradient-based method in quantum control, which promises 
the monotonicity of convergence during the iteration [174]. Different from GRAPE, only one 

14 QuanEstimation package: https://github.com/LiuJPhys/QuanEstimation.
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Vk( j) is updated in each iteration in Krotov’s method, as shown in figure 7(b). This method can 
also be extended to quantum parameter estimation with the aim of searching the optimal con-
trol for a high precision limit. It is known that the gradient-based methods can only harvest the 
local extremals. Thus, it is also useful to involve gradient-free methods, including Monte Carlo 
method and particle swarm optimization, into the quantum parameter estimation, or apply a 
hybrid method combining gradient-based and gradient-free methods as discussed in [175].

3.5. Estimation of a magnetic field

Measurement of the magnetic fields is an important application of quantum metrology, as it 
promises better performances than the classical counterparts. Various physical systems have 
been used as quantum magnetometers, including but not limited to nitrogen-vacancy centers 
[176, 177], optomechanical systems [178], and cold atoms [179].

A magnetic field can be represented as a vector, �B = B(cos θ cosφ, cos θ sinφ, sinφ), in 
the spherical coordinates, where B is the amplitude, and θ,φ define the direction of the field. 
Therefore, the estimation of a magentic field is in general a three-parameter estimation prob-
lem. The estimation of the amplitude with known angles is the most widely-studied case in 
quantum metrology, both in theory and experiments. For many quantum systems, it is related 
to the estimation of the strength of system-field coupling. In the case where one angle, for 
example φ is known, the estimation of the field becomes a two-parameter estimation problem. 
The simplest quantum detector for this case is a single-spin system [48, 53]. An example of the 
interaction Hamiltonian is H = −B�n0 · �σ with n0 = (cos θ, 0, sin θ) and �σ = (σx,σy,σz). The 
QFIM can then be obtained by making use of the expressions of H operators [48, 53]

Faa, Iaa

δFaa

δVk(j)
,

δIaa

δVk(j)

f0, Ieff , Feff

δf0

δVk(j)
,

δIeff

δVk(j)
,

δFeff

δVk(j)

Figure 6. Flow chart of GRAPE algorithm for controlled single-parameter and 
multiparameter estimation. Reprinted figure with permission from [171, 172]. Copyright 
(2019) by the American Physical Society.
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HB = t�n0 · �σ, Hθ = −1
2
sin(Bt)�n1 · �σ, (133)

where n1 = (cos(Bt) sin θ, sin(Bt),− cos(Bt) cos θ). The entries of QFIM then read

Fθθ = sin2(Bt)[1 − (�n1 ·�rin)
2], (134)

FBB = 4t2[1 − (�n0 ·�rin)
2], (135)

FBθ = 2t sin(Bt)(�n0 ·�rin)(�n1 ·�rin), (136)

where �rin is the Bloch vector of the probe state. The maximal values of Fθθ and FBB can be 
attained when �rin is vertical to both �n0 and �n1. However, as a two-parameter estimation prob-
lem, we have to check the value of 〈ψ0|[HB,Hθ]|ψ0〉 due to corollary 3.2.2. Specifically, for 
a pure probe state it reads 〈ψ0|[HB,Hθ]|ψ0〉 = − sin(Bt)(�n0 ×�n1) · �σ. For the time t = nπ/B 
(n = 1, 2, 3...), the expression above vanishes. However, another consequence of this condi-
tion is that Fθθ also vanishes. Thus, single-qubit probe may not be an ideal magnetometer 
when at least one angle is unknown. One possible candidate is a collective spin system, in 
which the H operator and QFIM are provided in [180]. Another simple and practical-friendly 
candidate is a two-qubit system. One qubit is the probe and the other one is an ancilla, which 
does not interact with the field. Consider the Hamiltonian H = −�B · �σ, the maximal QFIM in 
this case is (in the basis {B, θ,φ}) [84]

maxF = 4




t2 0 0
0 sin2(Bt) 0
0 0 sin2(Bt) cos2 θ


 , (137)

which can be attained by any maximally entangled state and the Bell measurement as the opti-
mal measurement. With the assistance of an ancilla, all three parameters B, θ,φ of the field 
can be simultaneously estimated. However, Fθθ and Fφφ are only proportional to sin2(Bt), 
indicating that unlike the estimation of the amplitude, a longer evolution time does not always 
lead to a better precision for the estimation of θ or φ.

Figure 7. (a) In GRAPE, the entire evolution time T is cut into m parts with time 
interval ∆t , i.e. m∆t = T . Vk(t) within the j th time interval is denoted as Vk( j) and is 
assumed to be a constant. All the Vk( j) are simultaneously updated in each iteration. (b) 
Krotov’s method updates one Vk( j) in each iteration.
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In 2016, Baumgratz and Datta [181] provided a framework for the estimation of a multidi-
mensional field with noncommuting unitary generators. Analogous to the optical multi-phase 
estimation, simultaneous estimation shows a better performance than separate and individual 
estimation.

To improve the performance of the probe system, additional control could be employed. 
For unitary evolution [84], showed that the performance can be significantly enhanced by 
inserting the anti-evolution operator as the control. Specifically if after each evolution of a 

period of δt, we insert a control which reverses the evolution as Uc = U†(δt) = eiH(�B)δt, the 
QFIM can reach

F = 4N2



(δt)2 0 0

0 sin2(Bδt) 0
0 0 sin2(Bδt) cos2 θ


 , (138)

where N is the number of the injected control pulses, and Nδt = t . In practice the control 

needs to be applied adaptively as Uc = eiH(�̂B)δt  with �̂B  as the estimated value obtained from 
previous measurement results. In the controlled scheme, the number of control pulses becomes 
a resource for the estimation of all three parameters. For the amplitude, the precision limit is 
the same as non-controlled scheme. But for the angles, the precision limit is significantly 
improved, especially when N is large. When δt → 0, the QFIM becomes

F = 4




t2 0 0
0 B2t2 0
0 0 B2t2 cos2 θ


 , (139)

which reaches the highest precision for the estimation of B, θ and φ simultaneously. Recently, 
Hou et al [182] demonstrated this scheme up to eight controls in an optical platform and dem-
onstrate a precision near the Heisenberg limit.

Taking into account the effect of noise, the optimal control for the estimation of the magn-
etic field is then hard to obtain analytically. The aforementioned numerical methods like 
GRAPE or Krotov’s method could be used in this case to find the optimal control. The perfor-
mance of the controlled scheme relies on the specific form of noise [171, 172], which could 
be different for different magnetometers.

In practice, the magnetic field may not be a constant field in space. In this case, the gradient 
of the field also needs to be estimated. The corresponding theory for the estimation of gradi-
ents based on Cramér–Rao bound has been established in [183, 184].

3.6. Other applications and alternative mathematical tools

Apart from the aforementioned cases, quantum multiparameter estimation is also studied 
in other scenarios, including the spinor systems [186], unitary photonic systems [187], net-
worked quantum sensors [188], and the quantum thermometry [189]. In the case of noise 
estimation, the simultaneous estimation of loss parameters has been studied in [190].

In 2016, Tsang et al [191] used quantum multiparameter estimation for a quantum the-
ory of superresolution for two incoherent optical point sources. With weak-source approx-
imation, the density operator for the optical field in the imaging plane can be expressed as 
ρ = (1 − ε)|vac〉〈vac|+ ε

2 (|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|), with ε the average photon number in a 
temporal mode, |vac〉 the vacuum state, |ψj〉 =

∫
dyψxj(y)|y〉 the quantum state of an arrival 

photon from the point source located at xj  of the object plane, ψxj(y) the wave function in the 
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image plane, and |y〉 the photon image-plane position eigenstate. Taking the position coordi-
nates to be one-dimensional, the parameters to be estimated are x1 and x2. The performance 
of the underlying quantum measurement can be assessed by the CFIM and its fundamental 
quantum limit can be revealed by the QFIM. In this case, the QFIM is analytically calculated 
in the 4-dimensional Hilbert subspace spanned by |ψ1〉, |ψ2〉, |∂1ψ1〉, and |∂2ψ2〉. For conveni-
ence, the two parameters x1 and x2 can be transformed to the centriod θ1 = (x1 + x2)/2 and 
the separation θ2 = x2 − x1. Assuming the imaging system is spatially invariant such that the 
point-spread function of the form ψxj(y) = ψ(y − xj) with real-valued ψ(y), the QFIM with 
respect to θ1 and θ2  is then given by

F =

(
4ε(∆k2 − γ2) 0

0 ε∆k2

)
, (140)

where ∆k2 =
∫∞
−∞[∂ψ(y)/∂y]2 dy and γ =

∫∞
−∞ ψ(y − θ2)∂ψ(y)/∂y dy [191]. With this 

result, it has been shown that direct imaging performs poorly for estimating small separations 
and other elaborate methods like spatial-mode demultiplexing and image inversion interfer-
ometry can be used to achieve the quantum limit [191, 192].

The design of enhanced schemes for quantum parameter estimation would inevitably face 
optimization processes, including the optimization of probe states, the parameterization trajec-
tories, the measurement and so on. If control is involved, one would also need to harvest the 
optimal control. Therefore, the stochastic optimization methods, including convex optim ization, 
Monte Carlo method and machine learning, could be used in quantum parameter estimation.

Machine learning is one of the most promising and cutting-edge methods nowadays. In 
recent years, it has been applied to condensed matter physics for phase transitions [193, 
194], design of a magneto-optical trap [195] and other aspects [196]. With respect to 
quantum parameter estimation, in 2010, Hentschel and Sanders [197] applied the particle 
swarm optimization algorithm [198] in the adaptive phase estimation to determine the best 
estimation strategy, which was experimentally realized by Lumino et  al [199] in 2018. 
Meanwhile, in 2017, Greplova et  al [200] proposed to use neural networks to estimate 
the rates of coherent and incoherent processes in quantum systems with continuous meas-
urement records. In the case of designing controlled schemes, similar to gradient-based 
methods, machine learning could also help use to find the optimal control protocal in order 
to achieve the best precision limit [185]. In particular, for quantum multiparameter estima-
tion, there still lacks of systematic research on the role of machine learning. For instance, 
we are not assured if there exists different performance compared to single-parameter 
estimation.

As a mathematical tool, quantum Cramér–Rao bound is not the only one for quantum 
multiparameter estimation. Bayesian approach [203–207], including Ziv–Zakai family 
[167, 168, 201] and Weiss–Weinstein family [166, 208], and some other tools [208–210] 
like Holevo bound [2, 28, 202], have also shown their validity in various multiparameter 
scenarios. These tools beyond the Cramér–Rao bound will be thoroughly reviewed by Guţă 
et al [211] in the same special issue and hence we do not discuss them in this paper. Please 
see [211] for further reading of this topic. In some scenarios in quantum parameter estima-
tions, there may exist some parameters that not of interest but affect the precision of esti-
mating other parameters of interest, which is usually referred to as the nuisance parameters. 
Suzuki et  al [212] has thoroughly reviewed the quant um state estimation with nuisance 
parameters in the same special issue. Please see [212] for further reading.
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4. Conclusion and outlook

Quantum metrology has been recognized as one of the most promising quantum technologies 
and has seen a rapid development in the past few decades. Quantum Cramér–Rao bound is the 
most studied mathematical tool for quantum parameter estimation, and as the core quantity of 
quantum Cramér–Rao bound, the QFIM has drawn plenty of attentions. It is now well-known 
that the QFIM is not only a quantity to quantify the precision limit, but also closely connected 
to many different subjects in quantum physics. This makes it an important and fundamental 
concept in quantum mechanics.

In recent years, many quantum multiparameter estimation schemes have been proposed 
and discussed with regard to various quantum systems, and some of them have shown theor-
etical advances compared to single-parameter schemes. However, there are still many open 
problems, such as the design of optimal measurement, especially simple and practical meas-
urement which are independent of the unknown parameters, as well as the robustness of preci-
sion limit against the noises and imperfect controls. We believe that some of the issues will 
be solved in the near future. Furthermore, quantum multiparameter metrology will then go 
deeply into the field of applied science and become a basic technology for other aspects of 
sciences.
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Appendix A. Derivation of traditional form of QFIM

The traditional calculation of QFIM usually assume a full rank density matrix, of which the 
spectral decompostion is in the form

ρ =

dim ρ−1∑
i=0

λi|λi〉〈λi|,
 (A.1)

where λi and |λi〉 are ith eigenvalue and eigenstate of ρ . dim ρ is the dimension of ρ . |λi〉 
satisfies 

∑dim ρ−1
i=0 |λi〉〈λi| =  with  the identity matrix. Substituting equation (A.1) into the 

equation of SLD (∂xa is the abbreviation of ∂/∂xa)
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∂xaρ =
1
2
(ρLxa + Lxaρ) , (A.2)

and taking 〈λi| · |λj〉 on both sides of above equation, one can obtain

〈λi|Lxa |λj〉 =
2〈λi|∂xaρ|λj〉

λi + λj
. (A.3)

Next, utlizing equation (A.1), the QFIM

Fab =
1
2

Tr (ρ{Lxa , Lxb}) (A.4)

can be rewritten as

Fab =
1
2

dimρ−1∑
i=0

λi (〈λi|Lxa Lxb |λi〉+ 〈λi|Lxb Lxa |λi〉) . (A.5)

Inserting the equation  =
∑dim ρ−1

i=0 |λi〉〈λi| into above equation, one can obtain

Fab =

dim ρ−1∑
i,j=0

λiRe(〈λi|Lxa |λj〉〈λj|Lxb |λi〉). (A.6)

Substituting equation (A.3) into this equation, one has

Fab =

dim ρ−1∑
i,j=0

4λi
Re(〈λi|∂xaρ|λj〉〈λj|∂xbρ|λi〉)

(λi + λj)2 . (A.7)

Exchange subscripts i and j , the traditional form of QFIM is obtained as below

Fab =

dim ρ−1∑
i,j=0

2Re(〈λi|∂xaρ|λj〉〈λj|∂xbρ|λi〉)
λi + λj

. (A.8)

Appendix B. Derivation of QFIM for arbitrary-rank density matrices

In this appendix we show the detailed derivation of QFIM for arbitrary-rank density matrices. 
Here the spectral decompostion of ρ  is

ρ =

N−1∑
i=0

λi|λi〉〈λi|, (B.1)

where λi and |λi〉 are ith eigenvalue and eigenstate of ρ . Notice N here is the dimension of ρ
’s support. For a full-rank density matrix, N equals to dim ρ, the dimension of ρ , and for a 
non-full rank density matrix, N < dim ρ, and 

∑N−1
i=0 |λi〉〈λi| �=  (  is the identity matrix and 

=
∑dim ρ−1

i=0 |λi〉〈λi|). Furthermore, λi �= 0 for i ∈ [0, N − 1]. With these notations, Fab can 
be expressed by

Fab =

N−1∑
i=0

(∂xaλi)(∂xbλi)

λi
+

N−1∑
i=0

4λiRe (〈∂xaλi|∂xbλi〉)

−
N−1∑
i,j=0

8λiλj

λi + λj
Re(〈∂xaλi|λj〉〈λj|∂xbλi〉).

 

(B.2)
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Followings are the detailed proof of this equation.
Based on the equation of SLD (∂xa is the abbreviation of ∂/∂xa)

∂xaρ =
1
2
(ρLxa + Lxaρ) , (B.3)

one can easily obtain

〈λi|∂xaρ|λj〉 =
1
2
〈λi|Lxa |λj〉 (λi + λj) . (B.4)

The derivative of ρ  reads ∂xaρ =
∑N−1

i=0 ∂xaλi|λi〉〈λi|+ λi|∂xaλi〉〈λi|+ λi|λi〉〈∂xaλi|, which 
gives 〈λi|∂xaρ|λj〉 = ∂xaλiδij + λj〈λj|∂xaλi〉+ λi〈∂xaλj|λi〉. δij is the Kronecker delta func-
tion (δij = 1 for i  =  j  and zero otherwise). Substituting this expression into above equation, 
〈λi|Lxa |λj〉 can be calculated as

〈λi|Lxa |λj〉 =

{
δij

∂xaλi

λi
+

2(λj−λi)
λi+λj

〈λi|∂xaλj〉, i or j ∈ [0, N − 1];

arbitrary value, i, j ∈ [N, dim ρ− 1].
 (B.5)

With the solution of SLD, we can now further calculate the QFIM. Utlizing equation (B.1), 
the QFIM can be rewritten into

Fab =
1
2

N−1∑
i=0

λi (〈λi|Lxa Lxb |λi〉+ 〈λi|Lxb Lxa |λi〉) . (B.6)

Inserting the equation  =
∑dim ρ−1

i=0 |λi〉〈λi| into above equation, one can obtain

Fab =

N−1∑
i=0

dim ρ−1∑
j=0

λiRe(〈λi|Lxa |λj〉〈λj|Lxb |λi〉). (B.7)

In this equation, it can be seen that the arbitrary part of 〈λi|Lxa |λj〉 does not affect the value 
of QFIM since it is not involved in above equation, but it provides a freedom for the optimal 
measurements, which will be further discussed later. Substituting equation (B.5) into above 
equation, we have

Fab =

N−1∑
i,j=0

δij
(∂xaλi)(∂xbλi)

λi
+

4λi(λi − λj)
2

(λi + λj)2 Re (〈λi|∂xaλj〉〈∂xbλj|λi〉)

+

N−1∑
i=0

dim ρ−1∑
j=N

4λiRe (〈∂xaλi|λj〉〈λj|∂xbλi〉) ,

 

(B.8)

where the fact 〈λi|∂xaλj〉 = −〈∂xaλi|λj〉 has been applied. The third term in above equation can 
be further calculated as
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N−1∑
i=0

dim ρ−1∑
j=N

4λiRe (〈∂xaλi|λj〉〈λj|∂xbλi〉)

=

N−1∑
i=0

4λiRe


〈∂xaλi|




dim ρ−1∑
j=N

|λj〉〈λj|


 |∂xbλi〉




=

N−1∑
i=0

4λiRe


〈∂xaλi|


 −

N−1∑
j=0

|λj〉〈λj|


 |∂xbλi〉




=

N−1∑
i=0

4λiRe


〈∂xaλi|∂xbλi〉 −

N−1∑
j=0

〈∂xaλi|λj〉〈λj|∂xbλi〉


 .

 

(B.9)

Therefore equation (B.8) can be rewritten into

Fab =

N−1∑
i,j=0

δij
(∂xaλi)(∂xbλi)

λi
+

4λi(λi − λj)
2

(λi + λj)2 Re (〈λi|∂xaλj〉〈∂xbλj|λi〉)

+
N−1∑
i=0

4λiRe (〈∂xaλi|∂xbλi〉)−
N−1∑
i,j=0

4λiRe (〈∂xaλi|λj〉〈λj|∂xbλi〉) .

Exchange the subscripts i and j  in the second and fourth terms of above equation, it reduces 
into a symmetric form as shown in equation (B.2).

Appendix C. QFIM in Bloch representation

Bloch representation is a well-used representation of quantum states in quantum mechanics 
and quantum information theory. For a d-dimensional quantum state ρ , it can be expressed by

ρ =
1
d

(
+

√
d(d − 1)

2
�r · �κ

)
, (C.1)

where �r = (r1, r2..., rk, ...)T  is the Bloch vector (|�r|2 � 1) and �κ is a (d2  −  1)-dimensional vec-
tor of su(d) generator satisfying Tr(κi) = 0 and

{κi,κj} =
4
d
δij +

d2−1∑
m=1

µijmκm, (C.2)

[κi,κj] = i
d2−1∑
m=1

εijmκm, (C.3)

where δij is the Kronecker delta function. µijm and εijm are the symmetric and antisymmetric 
structure constants, which can be calculated via the following equations

µijl =
1
2

Tr ({κi,κj}κl) , (C.4)
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εijl = − i
2

Tr ([κi,κj]κl) . (C.5)

It is easy to find Tr(κiκj) = 2δij and µijl keeps still for any order of ijl, which will be used in 
the following.

Now we express the SLD operator with the su(d) generators as [43, 44]

Lxa = za +�ya · �κ, (C.6)

where za is a number and �ya is a vector. In the following we only use z and �y  for convenience. 
From the equation ∂xaρ = 1

2 (ρL + Lρ), one can find

c∂xa�r · �κ =
z
d

+
1
d
�y · �κ+ cz�r · �κ+

c
2
{�r · �κ,�y · �κ}, (C.7)

where c =
√
(d − 1)/(2d). Furthermore,

c
2
{�r · �κ,�y · �κ} =

∑
ij

riyj
c
2
{κi,κj} =

2c
d
�y ·�r +

c
2

∑
ijm

riyjµijmκm. (C.8)

The coefficients of  in equation (C.7) from both sides have to be the same, which gives

z = −2c�y ·�r = −2c�y T�r, (C.9)

which can also be obtained from the equation Tr(ρLxa) = 0. Similarly, the coefficients of κi in 
equation (C.7) from both sides have to be the same, which gives

c∂xa ri =
yi

d
+ czri +

c
2

∑
jm

µjmiymrj. (C.10)

This can also be obtained by multipling κi on both sides of equation (C.7) and then taking the 
trace. Now we introduce the matrix G with the entry

Gij =
1
2

Tr(ρ{κi,κj}). (C.11)

It is easy to see G is real symmetric. Substituting equation (C.2) into the equation above, it 
can be further written into

Gij =
2
d
δij + c

∑
m

µijmrm. (C.12)

Hence, the last term in equation (C.10) can be rewritten into

c
2

∑
jm

µjmiymrj =
c
2

∑
m

ym

∑
j

µjmirj

=
1
2

∑
m

ym

(
Gim − 2

d
δim

)

=
1
2

∑
m

Gimym − yi

d
.

 

(C.13)

Substituting this equation into equation (C.10), one has c∂xa ri = czri +
1
2

∑
m Gimym, which 

immediately leads to

c∂xa�r = cz�r +
1
2

G�y. (C.14)
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Futhermore, one can check that

(�r�r T)�y =
(
�y T�r

)
�r = − 1

2c
z�r. (C.15)

Utilizing this equation, equation (C.14) reduces to

c∂xa�r = −2c2 (�r�r T)�y + 1
2

G�y. (C.16)

Therefore,

�y =

(
1
2c

G − 2c�r�r T
)−1

∂xa�r. (C.17)

Next, we calculate the entry of QFIM and we will use the full notation za and �ya instead of 
z, �y . The entry of QFIM reads

Fab =
1
2

Tr(ρ{La, Lb})

= zazb + 2c(za�yb ·�r + zb�ya ·�r) +
1
2

∑
ij

ya,iyb,jTr (ρ{κi,κj})

= −zazb +�y T
a G�yb.

 

(C.18)

Based on equations (C.9) and (C.14), one can obtain

c�y T
a ∂xb�r = czb�y T

a�r +
1
2
�y T

a G�yb = −1
2

zazb +
1
2
�y T

a G�yb. (C.19)

Hence, the QFIM can be written as

Fab = 2c�y T
a ∂xb�r = 2c(∂xb�r)

T�ya. (C.20)

Utilizing equation (C.17), the QFIM can be finally written into

Fab = 2c(∂xb�r)
T
(

1
2c

G − 2c�r�r T
)−1

∂xa�r

= (∂xb�r)
T
(

1
4c2 G −�r�r T

)−1

∂xa�r

= (∂xb�r)
T
(

d
2(d − 1)

G −�r�r T
)−1

∂xa�r.

 

(C.21)

The theorem has been proved.
The simplest case here is single-qubit systems. The corresponding density matrix is 

ρ = 1
2 ( 2 +�r · �σ) with �σ = (σ1,σ2,σ3) the vector of Pauli matrices and 2 is the 2 by 2 identity 

matrix. In this case, G = 3 ( 3 is the 3 by 3 identity matrix) due to the fact {σi,σj} = 2δij 2. 
Equation (C.21) then reduces to

Fab = (∂xb�r)
T (

3 −�r�r T)−1
∂xa�r. (C.22)

It can be checked that

(
3 −�r�r T)−1

= 3 +
1

1 − |�r|2
�r�r T. (C.23)
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The QFIM then reads

Fab = (∂xb�r)
T(∂xa�r) +

[
(∂xa�r)

T�r
] [
(∂xb�r)

T�r
]

1 − |�r|2
, (C.24)

or equivalently,

Fab = (∂xa�r) · (∂xb�r) +
(�r · ∂xa�r)(�r · ∂xb�r)

1 − |�r|2
. (C.25)

Appendix D. One-qubit basis-independent expression of QFIM

This appendix shows the proof of theorem 2.6. We first prove that the QFIM for one-qubit 
mixed state can be written as [46]

Fab = Tr [(∂xaρ)(∂xbρ)] +
1

det ρ
Tr [(∂xaρ− ρ∂xaρ)(∂xbρ− ρ∂xbρ)] . (D.1)

Utilizing the spectral decomposition ρ = λ0|λ0〉〈λ0|+ λ1|λ1〉〈λ1|, the first term reads

Tr[(∂xaρ)(∂xbρ)] = 〈λ0|∂xaρ|λ0〉〈λ0|∂xbρ|λ0〉+ 〈λ1|∂xaρ|λ1〉〈λ1|∂xbρ|λ1〉
+ 2Re(〈λ0|∂xaρ|λ1〉〈λ1|∂xbρ|λ0〉).

 (D.2)
The second term

1
det ρ

Tr [(∂xaρ− ρ∂xaρ)(∂xbρ− ρ∂xbρ)]

=
1

det ρ
Tr [(∂xaρ)(∂xbρ) + ρ(∂xaρ)ρ(∂xbρ)− ρ{∂xaρ, ∂xbρ}] .

 
(D.3)

Since

1
det ρ

Tr [ρ(∂xaρ)ρ(∂xbρ)]

=
λ0

λ1
〈λ0|∂xaρ|λ0〉〈λ0|∂xbρ|λ0〉+

λ1

λ0
〈λ1|∂xaρ|λ1〉〈λ1|∂xbρ|λ1〉

+ 2Re(〈λ0|∂xaρ|λ1〉〈λ1|∂xbρ|λ0〉),

 

(D.4)

and

− 1
det ρ

Tr [ρ{∂xaρ, ∂xbρ}]

= − 2
λ1

〈λ0|∂xaρ|λ0〉〈λ0|∂xbρ|λ0〉 −
2
λ0

〈λ1|∂xaρ|λ1〉〈λ1|∂xbρ|λ1〉

− 2
λ0λ1

Re(〈λ0|∂xaρ|λ1〉〈λ1|∂xbρ|λ0〉),

 

(D.5)

one can finally obtain

Tr [(∂xaρ)(∂xbρ)] +
1

det ρ
Tr [(∂xaρ− ρ∂xaρ)(∂xbρ− ρ∂xbρ)]

=
1
λ0

〈λ0|∂xaρ|λ0〉〈λ0|∂xbρ|λ0〉+
1
λ1

〈λ1|∂xaρ|λ1〉〈λ1|∂xbρ|λ1〉

+ 4Re(〈λ0|∂xaρ|λ1〉〈λ1|∂xbρ|λ0〉),

 

(D.6)
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which coincides with the traditional formula of QFIM in theorem 2.1. Equation (D.1) is then 
proved. Furthermore, one may notice that 〈λ0|∂xaρ|λ0〉 = ∂xaλ0, 〈λ1|∂xaρ|λ1〉 = ∂xaλ1, and 
〈λ0|∂xaρ|λ1〉 = 〈∂xaλ0|λ1〉+ 〈λ0|∂xaλ1〉 = 0, which gives

Tr [(∂xaρ)(∂xbρ)− ρ{∂xaρ, ∂xbρ)}]
= (∂xaλ0)(∂xbλ0)− λ0(∂xaλ0)(∂xbλ0)− λ1(∂xaλ1)(∂xbλ1)

= 0,
 (D.7)

namely, the equality Tr [(∂xaρ)(∂xbρ)] = Tr (ρ{∂xaρ, ∂xbρ)}) holds for single-qubit mixed 
states. Thus, equation (D.1) can further reduce to

Fab = Tr [(∂xaρ)(∂xbρ)] +
1

det ρ
Tr [(ρ(∂xaρ)ρ(∂xbρ)] . (D.8)

The theorem has been proved.

Appendix E. Derivation of SLD operator for Gaussian states

E.1. SLD operator for multimode Gaussian states

The derivation in this appendix is majorly based on the calculation in [62, 67]. Let us first 
recall the notations before the derivation. The vector of quadrature operators are defined as 
�R = (q̂1, p̂1, ..., q̂m, p̂m)

T. Ω is a symplectic matrix Ω = iσ⊕m
y . χ(�s) is the characteristic func-

tion. Furthermore, denote d = 〈�R〉. To keep the calculation neat, we use χ, ρ , L instead of χ(�s), 
ρ , Lxa  in this appendix. Some other notations are 〈·〉 = Tr(ρ·) and Ȧ = ∂xa A.

The characteristic function χ = 〈D〉, where D = ei�RTΩ�s  with �s ∈ R2m. Substituting D into 
the equation ∂xaρ = 1

2 (ρL + Lρ) and taking the trace, we obtain

∂xaχ =
1
2
〈{L, D}〉. (E.1)

Next, assume the SLD operator is in the following form

L = L(0) + �L(1),T�R + �R TG�R, (E.2)

where L(0) is a real number, �L(1) is a 2m-dimensional real vector and G is a 2m-dimensional 
real symmetric matrix. These conditions promise the Hermiticity of SLD. With this ansatz, 
equation (E.1) can then be rewritten into

∂xaχ = L(0)χ+
1
2

∑
i

L(1)
i 〈{Ri, D}〉+ 1

4

∑
ij

Gij〈{{Ri, Rj}, D}〉. (E.3)
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Now we calculate 〈{Ri, D}〉 in equation (E.3). Denote [A, ·] = A×(·), one can have

∂sk D =
∑

i

iΩik

∫ 1

0
eiy�RTΩ�sRie−iy�RTΩ�sdyD

=
∑

i

iΩik

∫ 1

0

∑
n

(iy�RTΩ�s)×,n

n!
RidyD

=
∑

i

iΩik

∫ 1

0
Ri + y

[
i�RTΩ�s, Ri

]
dyD

=
∑

i

iΩik


Ri +

1
2

∑
jl

ΩijΩjlsl


D

= i
∑

i

Ωki

(
1
2

si − Ri

)
D,

 

(E.4)

where we have used the fact Ωij = −Ωji and 
∑

j ΩijΩjk = −δik which come from the equa-
tion Ω2 = − 2m. Substituting the equation

∫ 1

0
eiy�RTΩ�sRie−iy�RTΩ�sdyD = D

∫ 1

0
e−iy�RTΩ�sRieiy�RTΩ�sdy, (E.5)

into the first line of equation  (E.4) and repeat the calculation, one can obtain 
∂sk D = −i

∑
i ΩkiD

( 1
2 si + Ri

)
. Combining this equation  with equation  (E.4), ∂sk D can be 

finally written as

∂sk D = − i
2

∑
i

Ωki{Ri, D}, (E.6)

which further gives 〈∂sk D〉 = − i
2

∑
i Ωki〈{Ri, D}〉. Based on this equation, it can be found ∑

k Ωjk〈∂sk D〉 = − i
2

∑
ik ΩjkΩki〈{Ri, D}〉. Again since 

∑
k ΩjkΩki = −δij, it reduces to

〈{Rj, D}〉 = −i2
∑

k

Ωjk〈∂sk D〉 = −i2
∑

k

Ωjk∂skχ. (E.7)

Next, continue to take the derivative on ∂sk D, we have

∂sk′∂sk D = − i
2

∑
i

Ωki{Ri, ∂sk′ D} − 1
4

∑
ij

Ωk′jΩki{Ri, {Rj, D}}. (E.8)

Due to the Baker–Campbell–Hausdorff formula, D†RiD = Ri + [−i�RTΩ�s, Ri] = Ri + si,  
the commutation between Ri and D can be obtained as [Ri, D] = siD, which further gives 
{Ri, {Rj, D}} = {{Ri, Rj}, D} − sisjD . Then equation (E.8) can be rewritten into

∂sk′∂sk D = −1
4

∑
ij

Ωk′jΩki{{Ri, Rj}, D}+ 1
4

∑
ij

Ωk′jΩkisisjD. (E.9)

And one can finally obtain

〈{Ri, {Rj, D}}〉 = −4
∑
kk′

ΩikΩjk′〈∂sk′∂sk D〉+ sisjχ

= −4
∑
kk′

ΩikΩjk′
(
∂sk′∂skχ

)
+ sisjχ.

 
(E.10)
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With equations (E.7) and (E.10), equation (E.3) can be expressed by

∂xaχ =


L(0) +

1
4

∑
ij

Gijsisj


χ− i

∑
ik

L(1)
i Ωik(∂skχ)

−
∑
ijkk′

GijΩikΩjk′(∂sk′∂skχ).

 

(E.11)

On the other hand, from the expression of characteristic function

χ = e−
1
2�s

TΩCΩT�s−i(Ωd)T�s (E.12)

it can be found that

∂xaχ =

[
−1

2
�s TΩĊΩT�s − i(Ωḋ)T�s

]
χ, (E.13)

and

∂skχ = −
∑

ijl

ΩklΩijCjlsiχ− i
∑

i

Ωkidiχ,

∂sk′∂skχ = −
∑
i1j1

Ωki1Ωk′j1 Ci1j1χ−
∑
i1j1

Ωki1Ωk′j1 di1 dj1χ

+
∑

i1j1l1i2j2l2

Ωkl1Ωk′l2Ωi1j1Ωi2j2 Cj1l1 Cj2l2 si1 si2χ

+ i
∑

i1j1l1i2

(Ωki2Ωk′l1 +Ωk′i2Ωkl1) Ωi1j1 Cj1l1 si1 di2χ.

Then we have −i
∑

ik L(1)
i Ωik(∂skχ) =

∑
i L(1)

i

(
−i

∑
jk ΩkjCijsk + di

)
χ, and

−
∑
ijkk′

GijΩikΩjk′(∂sk′∂skχ)

=
∑

ij

Gij (Cij + didj)χ−
∑

iji1j1i2j2

GijΩi1j1Ωi2j2 Cij1 Cjj2 si1 si2χ

− i
∑
iji1j1

GijΩi1j1 si1 (Cjj1 di + Cij1 dj)χ.

Substituting these equations into equation (E.11), ∂xaχ can be expressed by

∂xaχ =


L(0) +

1
4

∑
ij

Gijsisj


χ+

∑
i

L(1)
i


−i

∑
jk

ΩkjCijsk + di


χ

+
∑

ij

Gij (Cij + didj)χ−
∑

iji1j1i2j2

GijΩi1j1Ωi2j2 Cij1 Cjj2 si1 si2χ

− i
∑
iji1j1

GijΩi1j1 si1 (Cjj1 di + Cij1 dj)χ.

 

(E.14)
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This equation can be written into a more compact way as below

∂xaχ = L(0)χ+ �L(1),Tdχ+ Tr(GC)χ+ dTGdχ

+ i�L(1),TCΩ�sχ+ i2dTGCΩ�sχ+�sTΩCGCΩ�sχ+
1
4
�sTG�sχ.

 (E.15)

Compare this equation with equation (E.13), it can be found that

L(0) + L(1),Td + Tr(GC) + dTGd = 0, (E.16)

�L(1),TCΩ+ 2dTGCΩ = −ḋTΩT, (E.17)

1
4

G +ΩCGCΩ = −1
2
ΩĊΩT. (E.18)

From the second equation above, one can obtain

�L(1) = C−1ḋ − 2Gd. (E.19)

Using this equation and the equation (E.16), it can be found that

L(0) = dTGd − ḋTC−1d − Tr(GC). (E.20)

Once we obtain the expression of G, L(0) and �L(1) can be obtained correspondingly, which 
means we need to solve equation (E.18), which can be rewritten into following form

ΩGΩ+ 4CGC = 2Ċ. (E.21)

Since C = SCdST and SΩST = Ω, above equation can be rewritten into

ΩGsΩ+ 4CdGsCd = 2S−1Ċ
(
ST)−1

, (E.22)

where Gs = STGS. Denote the map E(Gs) := ΩGsΩ+ 4CdGsCd, then Gs = E−1(E(Gs)). The 

map E(Gs) can be decomposed via the generators {A( jk)
l } ( j, k = 1, ..., m), where

A( jk)
l =

1√
2

iσ( jk)
y ,

1√
2
σ( jk)

z ,
1√
2

( jk)
2 ,

1√
2
σ( jk)

x (E.23)

for l = 0, 1, 2, 3. σ( jk)
i  is a 2m-dimensional matrix with all the entries zero expect the 2 × 2 

block shown as below

σ
( jk)
i =




1st · · · kth · · ·
1st 02×2 02×2 02×2 02×2
... 02×2

...
...

...
jth 02×2 · · · σi · · ·
...

...
...

...
...




, (E.24)

where 02×2  represents a 2 by 2 block with zero entries. ( jk)
2  is similar to σ( jk)

i  but replace the 
block σi with 2. A( jk)

l  satisfies the orthogonal relation Tr(A( jk)
l A( j′k′)

l′ ) = δjj′δkk′δll′. Recall 
that Cd =

⊕m
k=1 ck 2, it is easy to check that

ΩA( jk)
l Ω = (−1)l+1A( jk)

l , (E.25)

CdA( jk)
l Cd = cjckA( jk)

l . (E.26)
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Next decompose S−1Ċ(ST)−1 with {A( jk)
l } as

S−1Ċ(ST)−1 =
∑

jkl

g( jk)
l A( jk)

l , (E.27)

where g( jk)
l = Tr[S−1Ċ(ST)−1A( jk)

l ]. Decomposing Gs as Gs =
∑

jkl g̃( jk)
l A( jk)

l , and substitut-
ing it into equation (E.22), we have

∑
jkl

g( jk)
l

(
ΩA( jk)

l Ω+ 4CdA( jk)
l Cd

)
=

∑
jkl

g( jk)
l A( jk)

l . (E.28)

Utilizing equations (E.25) and (E.26), above equation reduces to
∑

jkl

g̃( jk)
l

[
4cjck + (−1)l+1]A( jk)

l =
∑

jkl

g( jk)
l A( jk)

l , (E.29)

which indicates

g̃( jk)
l =

g( jk)
l

4cjck + (−1)l+1 . (E.30)

Thus, G = (ST)−1GsS−1 can be solved as below

G =
∑

jkl

g( jk)
l

4cjck + (−1)l+1

(
ST)−1

A( jk)
l S−1. (E.31)

In summary, the SLD can be expressed by

L = L(0) + �L(1),T�R + �RTG�R, (E.32)

where

G =

m∑
j,k=1

3∑
l=0

g( jk)
l

4cjck + (−1)l+1

(
ST)−1

A( jk)
l S−1

 (E.33)

with

A( jk)
l =

1√
2

iσ( jk)
y ,

1√
2
σ( jk)

z ,
1√
2

( jk)
2 ,

1√
2
σ( jk)

x (E.34)

for l = 0, 1, 2, 3 and g( jk)
l = Tr[S−1Ċ(ST)−1A( jk)

l ]. And

�L(1) = C−1ḋ − 2Gd, (E.35)

L(0) = dTGd − ḋTC−1d − Tr(GC). (E.36)

E.2. SLD operator for single-mode Gaussian state

For a single-mode case, a 2 by 2 symplectic S matrix satisfies det S = 1. Based on the equa-
tion C = SCdST = cSST (c is the symplectic value), the following equations can be obtained

C00 = c(S2
00 + S2

01),

C11 = c(S2
10 + S2

11),
 (E.37)

C01 = c(S00S10 + S01S11). (E.38)
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Together with the equation det S = S00S11 − S01S10 = 1, the symplectic value c can be solved 
as c =

√
detC . Assume the form

S00 =

√
C00

c
cos θ, S01 =

√
C00

c
sin θ, (E.39)

S10 =

√
C11

c
cosφ, S11 =

√
C11

c
sinφ. (E.40)

Substituting above expressions into equation (E.37), it can be found θ,φ need to satisfy

cos(φ− θ) =
C01√

C00C11
, sin(φ− θ) =

c√
C00C11

. (E.41)

Since there is only four constrains for these five variables, one of them is free. We take 
θ = π/2 − φ, and the symplectic matrix reduces to

S =
1√
c

(√
C00 sinφ

√
C00 cosφ√

C11 cosφ
√

C11 cosφ

)
, (E.42)

where φ satisfies sin(2φ) = C01√
C00C11

 and cos(2φ) = − c√
C00C11

. Based on theorem 2.9, we 

obtain

g0 = 0, (E.43)

g1 =
1√

2C00C11
C11Ċ00 − C00Ċ11, (E.44)

g2 =
√

2ċ, (E.45)

g3 =

√
2(cĊ01 − ċC01)√

C00C11
, (E.46)

where Ċ, ċ are short for ∂xa C and ∂xa c. Meanwhile, we have

(ST)−1A1S−1 =

√
2C00C11

2

(
1

C00
0

0 − 1
C11

)
, (E.47)

(ST)−1A2S−1 =
1√
2c

(
C11 −C01

−C01 C00

)
, (E.48)

(ST)−1A3S−1 =

√
C00C11√

2c

(
−C01

C00
1

1 −C01
C11

)
. (E.49)

These expressions immediately give Gxa as below

[Gxa ]00 =
1

4c2 + 1

[
C11Ċ00 − C00Ċ11

2C00
− C01

C00
(Ċ01 −

ċ
c

C01)

]
+

1
4c2 − 1

ċ
c

C11

=
1

4c2 + 1

(
ċ
c

C11 − Ċ11

)
+

1
4c2 − 1

ċ
c

C11

= − 1
16c4 − 1

[
(4c2 − 1)C11 − 8cċC11

]
.

 

(E.50)
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Define a matrix

J :=
1

4c2 − 1
C, (E.51)

[Gxa ]00 can be rewritten into

[Gxa ]00 = −4c2 − 1
4c2 + 1

∂xa J11. (E.52)

Similarly, one can obtain

[Gxa ]11 = −4c2 − 1
4c2 + 1

∂xa J00, (E.53)

and

[Gxa ]01 = [Gxa ]10 =
4c2 − 1
4c2 + 1

∂xa J01. (E.54)

These expressions indicate

Gxa =
4c2 − 1
4c2 + 1

Ω(∂xa J)Ω, (E.55)

with

Ω =

(
0 1
−1 0

)
. (E.56)

Appendix F. QFIM and Bures metric

The Bures distance between two quantum states ρ1 and ρ2 is defined as

D2
B(ρ1, ρ2) = 2 − 2f (ρ1, ρ2), (F.1)

where f (ρ1, ρ2) = Tr
√√

ρ1ρ2
√
ρ1  is the quantum fidelity. Now we calcuate the fidelity for 

two close quantum states ρ(�x) and ρ(�x + d�x). The Taylor series of ρ(�x + d�x) (up to the second 
order) reads

ρ(�x + d�x) = ρ(�x) +
∑

a

∂xaρ(�x)dxa +
1
2

∑
ab

∂2ρ(�x)
∂xa∂xb

dxadxb. (F.2)

In the following ρ  will be used as the abbreviation of ρ(�x). Utilizing the equation above, one 
can obtain

√
ρρ(�x + d�x)

√
ρ

= ρ2 +
∑

a

√
ρ∂xaρ

√
ρdxa +

1
2

∑
ab

(
√
ρ

∂2ρ

∂xa∂xb

√
ρ

)
dxadxb. (F.3)

Now we assume
√√

ρρ(�x + d�x)
√
ρ = ρ+

∑
a

Wadxa +
∑

ab

Yabdxadxb. (F.4)
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Taking the square of above equation and compare it to equation (F.3), one can obtain
√
ρ∂xaρ

√
ρ = ρWa + Waρ, (F.5)

1
2
√
ρ∂2ρ

√
ρ = ρYab + Yabρ+

1
2
{Wa, Wb}, (F.6)

where ∂2ρ is short for ∂2ρ
∂xa∂xb

. 1
2{Wa, Wb} (not WaWb) is used to make sure the equation  is 

unchanged when the subscripts a and b exchange. Meawhile, from equation (F.4), the Bures 
metric DB(ρ(�x), ρ(�x + d�x)) (the abbreviation DB will bu used below) can be calculated as

D2
B = −2

∑
a

(TrWa)dxa − 2
∑

ab

(TrYab)dxadxb. (F.7)

As long as we obtain the specific expressions of Wa and Yab from equations  (F.5) and 
(F.6), DB can be obtained immediately. To do that, we utilize the spectral decomposition 
ρ =

∑
i λi|λi〉〈λi|. In the basis {|λi〉}, the matrix entries ([·]ij = 〈λi| · |λj〉) read

[
√
ρ∂xaρ

√
ρ]ij =

√
λiλj[∂xaρ]ij, (F.8)

[√
ρ∂2ρ

√
ρ
]

ij =
√
λiλj

[
∂2ρ

]
ij . (F.9)

Here [∂xaρ]ij = δij∂xaλi − (λi − λj)〈λi|∂xaλj〉, and
[
∂2ρ

]
ij = ∂2λiδij + λi〈∂2λi|λj〉+ λj〈λi|∂2λj〉

+ (∂xaλj − ∂xaλi)〈λi|∂xbλj〉+ (∂xbλj − ∂xbλi)〈λi|∂xaλj〉

+
∑

k

λk(〈λi|∂xaλk〉〈∂xbλk|λj〉+ 〈λi|∂xbλk〉〈∂xaλk|λj〉),
 

(F.10)

where ∂2λi and |∂2λi〉 are short for ∂2λi
∂xa∂xb

 and ∂2

∂xa∂xb
|λi〉. Now we denote ρ’s dimension as N 

and λi ∈ S for i = 0, 1, 2..., M − 1. Under the assumption that the support S  is not affected by 
the values of �x , i.e. the rank of ρ(�x) equals to that of ρ(�x + d�x), 

√
ρ∂xaρ

√
ρ and 

√
ρ∂2ρ

√
ρ are 

both block diagonal. Based on equation (F.5), the ijth matrix entry of Wa can be calculated as

[Wa]ij =

[√
ρ∂xaρ

√
ρ
]

ij

λi + λj
=

1
2
∂xaλiδij −

√
λiλj(λi − λj)

λi + λj
〈λi|∂xaλj〉, (F.11)

for i, j ∈ [0, M − 1] and [Wa]ij = 0 for others. One can observe that Wa is a Hermitian matrix, 
and

TrWa =
∑

ii

[Wa]ii =
1
2

∑
i

∂xaλi = 0, (F.12)

which means there is no first order term in Bures metric. With respect to the second order 
term, we need to know the value of [Yab]ii. From equation (F.6), one can obtain

TrYab =
1
4

∑
i

[∂2ρ]ii −
∑

ik

1
2λi

Re ([Wa]ik[Wb]ki) . (F.13)

Due to the fact 〈∂2λi|λi〉+ 〈λi|∂2λi〉 = −2Re(〈∂xaλi|∂xbλi〉), one can have

[∂2ρ]ii = ∂2λi − 2λiRe(〈∂xaλi|∂xbλi〉) +
∑

k

2λkRe(〈λi|∂xaλk〉〈∂xbλk|λi〉),

 (F.14)
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which further gives

1
4

∑
i

[∂2ρ]ii = −1
2

∑
i

λiRe(〈∂xaλi|∂xbλi〉)

+
∑

ik

1
4
(λi + λk)Re(〈λi|∂xaλk〉〈∂xbλk|λi〉),

 

(F.15)

where the fact 
∑

i ∂
2λi = 0 has been applied. Next, from equation (F.11) one can obtain

[Wa]ik[Wb]ki =
1
4
(∂xaλi)(∂xbλi) +

∑
k

λiλk(λi − λk)
2

(λi + λk)2 〈λi|∂xaλk〉〈∂xbλk|λi〉,

which means

∑
ik

1
2λi

Re([Wa]ik[Wb]ki)

=
∑

i

1
8λi

(∂xaλi)(∂xbλi) +
∑

ik

λk(λi − λk)
2

2(λi + λk)2 Re(〈λi|∂xaλk〉〈∂xbλk|λi〉)

=
∑

i

1
8λi

(∂xaλi)(∂xbλi) +
∑

ik

(λi − λk)
2

4(λi + λk)
Re(〈λi|∂xaλk〉〈∂xbλk|λi〉).

Thus, TrYab can then be expressed by

TrYab = −1
8

[∑
i

(∂xaλi)(∂xbλi)

λi
+
∑

i

4λiRe(〈∂xaλi|∂xbλi〉)

−
∑

ik

8λiλk

λi + λk
Re〈λi|∂xaλk〉〈∂xbλk|λi〉

]

= −1
8
Fab.

 

(F.16)

With this equation, we finally obtain

DB(ρ(�x), ρ(�x + d�x)) =
∑

ab

1
4
Fabdxaxb. (F.17)

One should notice that this proof shows that this relation is established for density matrices 
with any rank as long as the rank of ρ(�x) is unchanged with the varying of �x . In the case the 
rank can change, a thorough discussion can be found in [87].

Appendix G. Relation between QFIM and cross-correlation functions

This appendix gives the thorough calculation of the relation between QFIM and dynamic sus-
ceptibility in [109]. Consider the unitary parameterization U = exp(i

∑
a xaOa) with a thermal 

state ρ = 1
Z e−βH. Here Z = Tr(e−βH) is the partition function. Oa is a Hermitian generator 

for xa. In the following we set kB  =  1 and assume all Oa are commutative, i.e. [Oa, Ob] = 0 for 
any a and b. Denote Oa(t) = eiHtOae−iHt , and 〈·〉 = Tr(ρ·), the symmetric cross-correlation 
spectrum in this case reads

J. Phys. A: Math. Theor. 53 (2020) 023001



Topical Review

54

Sab(ω) =
1
2

∫ ∞

−∞
〈{Qa(t), Ob}〉eiωtdt. (G.1)

Utilizing the energy basis {|Ei〉} (with Ei the ith energy), it can be rewritten into

Sab(ω) =
1

2Z

∑
ij

(e−βEi + e−βEj)〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉
∫ ∞

−∞
ei(ω+Ei−Ej)dt.

Further use the equation 
∫∞
−∞ ei(ω+Ei−Ej)dt = 2πδ(ω + Ei − Ej), Sab(ω) can reduce to

Sab(ω) =
π

Z

∑
ij

(e−βEi + e−βEj)δ(ω + Ei − Ej)〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉. (G.2)

With this expression, one can find
∫ ∞

−∞
tanh2

( ω

2T

)
Re(Sab(ω))dω

=
∑

ij

∫ ∞

−∞
tanh2

( ω

2T

)
δ(ω + Ei − Ej)dω

× π

Z
(e−βEi + e−βEj)Re(〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉)

=
∑

ij

tanh2
(

Ej − Ei

2T

)
π

Z
(e−βEi + e−βEj)Re(〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉).

Since

tanh

(
Ei − Ej

2T

)
=

[e
1
2 β(Ei−Ej) − e−

1
2 β(Ei−Ej)]e−

1
2 β(Ei+Ej)

[e
1
2 β(Ei−Ej) + e−

1
2 β(Ei−Ej)]e−

1
2 β(Ei+Ej)

=
e−βEj − e−βEi

e−βEi + e−βEj
,

 

(G.3)

one can obtain
∫ ∞

−∞
tanh2

( ω

2T

)
Re(Sab(ω))dω (G.4)

= π
∑

ij

( 1
Z eβEi − 1

Z e−βEj
)2

1
Z e−βEi + 1

Z e−βEj
Re(〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉). (G.5)

From the expression of QFIM, it can be found that

Fab =
4
π

∫ ∞

−∞
tanh2

( ω

2T

)
Re(Sab(ω))dω. (G.6)

It can also be checked that

Re(Sab(ω)) =
1
2

∫ ∞

−∞
〈Qa(t)Ob + Ob(t)Oa〉eiωtdt. (G.7)
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In the mean time, the asymmetric cross-correlation spectrum is in the form

χab(ω) =
i
2

∫ ∞

−∞
eiωt〈[Oa(t), Ob]〉dt

= i
π

Z

∑
ij

δ(ω + Ei − Ej)(e−βEi − e−βEj)〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉,

which directly gives the relation between χab  and Sab as below

Im(χab(ω)) =
π

Z

∑
ij

tanh

(
Ej − Ei

2T

)
(e−βEi + e−βEj)δ(ω + Ei − Ej)

× Re(〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉)

=
π

Z
tanh

( ω

2T

)∑
ij

(e−βEi + e−βEj)δ(ω + Ei − Ej)

× Re(〈Ei|Oa|Ej〉〈Ej|Ob|Ei〉)

= tanh
( ω

2T

)
Re(Sab(ω)),

 

(G.8)

namely,

Im(χab(ω)) = tanh
( ω

2T

)
Re(Sab(ω)), (G.9)

which is just the fluctuation-dissipation theorem. Using this relation, one can further obtain 
the result in [109] as below

Fab =
4
π

∫ ∞

−∞
tanh

( ω

2T

)
Im(χab(ω))dω. (G.10)

Appendix H. Derivation of quantum multiparameter Cramér–Rao bound

The derivation of quantum multiparameter Cramér–Rao bound is based on the Cauchy–
Schwarz inequality below

Tr(X†X)Tr(Y†Y) �
1
4
|Tr(X†Y + XY†)|2, (H.1)

which comes from the complete form

Tr(X†X)Tr(Y†Y) �
1
4
|Tr(X†Y + XY†)|2 + 1

4
|Tr(X†Y − XY†)|2. (H.2)

Define X and Y as

X :=
∑

m

fmLm
√
ρ, (H.3)

Y :=
∑

m

gm(Om − 〈Om〉)
√
ρ, (H.4)

where fm, gm are real numbers for any m, and 〈·〉 = Tr(·ρ). Here Om is an observable defined 
as
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Om :=
∑

k

x̂m(k)Πk. (H.5)

x̂m(k) is the estimator of xm and is the function of kth result. Based on equation  (H.3), it 
can be calculated that Tr(X†X) =

∑
ml fmflTr(LmLlρ), which can be symmetrized into 

Tr(X†X) = 1
2

∑
ml fmflTr({Lm, Ll}ρ) =

∑
ml fmflFab. Define �f = ( f0, f1, ..., fm, ...)T, Tr(X†X) 

can be further rewritten into

Tr(X†X) = �f TF�f . (H.6)

Similarly, define �g = (g0, g1, ..., gm, ...)T and through some algebra, Tr(Y†Y) can be calculated 
as

Tr(Y†Y) = �g TC�g, (H.7)

where C is the covariance matrix for {Om}, and is defined as Cml =
1
2 〈{Om, Ol}〉 − 〈Om〉〈Ol〉. 

Furthermore, one can also obtain

1
2

Tr(X†Y + XY†) = �f TB�g, (H.8)

where the entry of B is defined as Bml =
1
2 Tr(ρ{Lm,Πl}) = 1

2 Tr({ρ, Lm}Ol). Utilizing 
∂xaρ = 1

2{ρ, Lm}, Bml reduces to Bml = Tr(Πl∂xmρ). Since we consider unbiased estimators, 
i.e. 〈Om〉 =

∑
m x̂mTr(ρΠk) = xm, Bml further reduces to Bml = ∂xm〈Ol〉 = δml, with δml the 

Kronecker delta function. Hence, for unbiased estimators B is actually the identity matrix .
Now substituting equations  (H.6)–(H.8) into the Cauchy–Schwarz inequality (H.1), one 

can obtain

�f TF�f�g TC�g �
(
�f T�g

)2
. (H.9)

Assuming F  is invertable, i.e. it is positive-definite, and taking �f = F−1�g , above inequality 
reduces to �g TF−1�g�g TC�g �

(
�g TF−1�g

)
2. Since F  is positive-definite, F−1 is also positive-

definite, which means �g TF−1�g is a positive number, thus, the above equation  can further 
reduce to �g TC�g � �g TF−1�g , namely,

C � F−1. (H.10)

Next we discuss the relation between C and cov(�̂x, {Πk}). Utilizing the defintion of Om, 
Cml can be written as

Cml =
∑
kk′

x̂m(k)x̂l(k′)
1
2

Tr(ρ{Πk,Πk′})

−

[∑
k

x̂mTr(ρΠk)

][∑
k

x̂lTr(ρΠk)

]
,

 

(H.11)

and cov(�̂x, {Πk}) for unbiased estimators reads

cov(�̂x, {Πk}) =
∑

k

x̂mx̂lTr(ρΠk)− xmxl. (H.12)

If {Πk} is a set of projection operators, it satisfies ΠkΠk′ = Πkδkk′. For unbiased estimators, ∑
k x̂m(l)Tr(ρΠk) = xm(l), which gives Cml =

∑
k x̂mx̂lTr(ρΠk)− xmxl, i.e.
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C = cov(�̂x, {Πk}). (H.13)

If {Πk} is a set of POVM, one can see

�g Tcov(�̂x, {Πk})�g =
∑

k

∑
ml

gmglx̂mx̂lTr(ρΠk)−
∑

ml

gmglxmxl

=
∑

k

(∑
m

gmx̂m

)2

Tr(ρΠk)−
∑

ml

gmglxmxl.
 

(H.14)

In the mean time,

�g TC�g =
1
2

∑
ml

gmglTr (ρOmOl + ρOlOm)−
∑

ml

gmglxmxl. (H.15)

Now define Bk :=
√
Πk

(∑
m gmx̂m −

∑
m gmOm

)
. Based on the Cauchy–Schwarz 

inequality Tr(A†A) � 0, which is valid for any operator A, one can immediately obtain 
Tr(ρB†

kBk) = Tr(
√
ρB†

kBk
√
ρ) � 0, which further gives 

∑
k Tr(ρB†

kBk) � 0. Through some 
calculations, the expression of 

∑
k Tr(ρB†

kBk) is in the form

∑
k

Tr(ρB†
kBk) =

∑
k

(∑
m

gmx̂m

)2

Tr(ρΠk)−
∑

ml

gmglTr(ρOmOl). (H.16)

Now taking the difference of equations (H.14) and (H.15), it can be found
∑

k

Tr(ρB†
kBk) = �g T

(
cov(�̂x, {Πk})− C

)
�g. (H.17)

Finally, we obtain the following inequality �g T(cov(�̂x, {Πk})− C)�g � 0, namely, for any 
POVM measurement,

cov(�̂x, {Πk}) � C. (H.18)

Based on inequality (H.10) and the property of quadratic form, we finally obtain 
cov(�̂x, {Πk}) � F−1. Consider the repetition of experiments (denoted as n), above bound 
needs to add a factor of 1/n. Hence the quantum multiparameter Cramér–Rao bound can be 
finally expressed by

cov(�̂x, {Πk}) �
1
n
F−1. (H.19)

Appendix I. Construction of optimal measurement for pure states

Assume the true values of the vector of unknown parameters �x  is �xtrue, we now provide 
the proof that for a pure parameterized state |ψ〉, a set of projectors containing the state 
|ψ�xtrue〉 := |ψ(�x = �xtrue)〉, i.e. {|mk〉〈mk, |m0〉 = |ψ�xtrue〉} is possible to be an optimal measure-
ment to attain the quantum Cramér–Rao bound, as shown in [137, 152]. The calculation in this 
appendix basically coincides with the appendix in [137].

Since {|mk〉〈mk|} contains the information of the true value, in practice one need to use 
the estimated value of �x  (denoted as �̂x ) to construct |m0〉 = |ψ(�̂x)〉 to perform this meas-
urement, then improve the accuracy of �̂x  adaptively. Thus, it is reasonable to assume 
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|ψ�xtrue〉 = |m0〉+
∑

xa
δxa|∂xaψ〉|�x=�̂x . The probability for |mk〉〈mk| is pk = |〈ψ|mk〉|2, which 

gives the CFIM as below

Iab(�̂x) =
∑

k

4Re(〈mk|∂xaψ〉〈ψ|mk〉)Re(〈mk|∂xbψ〉〈ψ|mk〉)
|〈ψ|mk〉|2

. (I.1)

At the limit �̂x → �xtrue, it is

Iab(�xtrue) = lim
�̂x→�xtrue

∑
k

4Re(〈mk|∂xaψ〉〈ψ|mk〉)Re(〈mk|∂xbψ〉〈ψ|mk〉)
|〈ψ|mk〉|2

. (I.2)

For the k  =  0 term,

lim
�̂x→�xtrue

Re(〈m0|∂xaψ〉〈ψ|m0〉) = Re(〈ψ�xtrue |∂xaψ〉)

= Re(〈ψ|∂xaψ〉)|�x=�xtrue = 0,
 (I.3)

and lim�x→�xtrue〈ψ|m0〉 = 1. Thus, the CFIM is

Iab(�xtrue) = lim
�̂x→�xtrue

∑
k �=0

4Re(〈mk|∂xaψ〉〈ψ|mk〉)Re(〈mk|∂xbψ〉〈ψ|mk〉)
|〈ψ|mk〉|2

. (I.4)

Due to the fact

4Re(〈mk|∂xaψ〉〈ψ|mk〉)Re(〈mk|∂xbψ〉〈ψ|mk〉)
= 2Re(〈∂xaψ|mk〉〈mk|∂xbψ〉)|〈ψ|mk〉|2

+ 2Re(〈mk|∂xaψ〉〈mk|∂xbψ〉〈ψ|mk〉2),

 (I.5)

one can have

Iab(�xtrue) = Fab(�xtrue)− Qab, (I.6)

where

Qab := lim
�̂x→�xtrue

∑
k �=0

2Re(〈mk|∂xaψ〉〈∂xbψ|mk〉)|〈ψ|mk〉|2

|〈ψ|mk〉|2

− 2Re(〈mk|∂xaψ〉〈mk|∂xbψ〉〈ψ|mk〉2)

|〈ψ|mk〉|2

= lim
�̂x→�xtrue

∑
k �=0

4Im(〈∂xaψ|mk〉〈mk|ψ〉)Im(〈∂xbψ|mk〉〈mk|ψ〉)
|〈ψ|mk〉|2

.

 

(I.7)

To let I(�xtrue) = F(�xtrue), Q has to be a zero matrix. Since the diagonal entry

Qaa = lim
�̂x→�xtrue

∑
k �=0

4Im2(〈∂xaψ|mk〉〈mk|ψ〉)
|〈ψ|mk〉|2

, (I.8)

in which all the terms within the summation are non-negative. Therefore, its value is zero if 
and only if

lim
�̂x→�xtrue

Im(〈∂xaψ|mk〉〈mk|ψ〉)
|〈ψ|mk〉|

= 0, ∀xa, k �= 0. (I.9)

Furthermore, this condition simultaneously makes the non-diagonal entries of Q vanish. Thus, 
it is the necessary and sufficient condition for Q  =  0, which means it is also the necessary and 
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sufficient condition for I = F  at the point of true value. One may notice that the limitation 
in equation (I.9) is a 0/0 type. Thus, we use the formula |ψ�xtrue〉 = |m0〉+

∑
xj
δxj|∂xjψ〉|�x=�̂x  to 

further calculate above equation. With this formula, one has

Im(〈∂xaψ|mk〉〈mk|ψ〉)
|〈ψ|mk〉|

=

∑
j δxjIm(〈∂xaψ|mk〉〈mk|∂xjψ〉)

|
∑

j δxj〈∂xjψ|mk〉|
. (I.10)

〈∂xjψ|mk〉 cannot generally be zero for all xj  since all ∂xjψ〉 are not orthogonal in general. Thus, 
equation (I.9) is equivalent to

Im(〈∂xaψ|mk〉〈mk|∂xbψ〉) = 0, ∀xa, xb, k �= 0. (I.11)

Appendix J. Gradient in GRAPE for Hamiltonian estimation

J.1. Gradient of CFIM

The core of GRAPE algorithm is to obtain the expression of gradient. The dynamics of the 
system is described by

∂tρ = E�xρ. (J.1)

For the Hamiltonian estimation under control, the dynamics is

∂tρ = −i[H0(�x) + Hc, ρ] + Lρ, (J.2)

where Hc =
∑ p

k=1 Vk(t)Hk is the control Hamiltonian with Hk the kth control and Vk(t) the 
corresponding time-dependent control amplitude. To perform the algorithm, the entire evo-
lution time T is cut into m parts with time interval ∆t , i.e. m∆t = T . Vk(t) within the j th time 
interval is denoted as Vk( j) and is assumed to be a constant.

For a set of probability distribution p(y|�x) = Tr(ρΠy) with {Πy} a set of POVM. The gradi-
ent of Iab at target time T reads [172]

δIab(T)
δVk( j)

= ∆tTr
(

L̃2,abM(1)
j

)
−∆2tTr

[
L̃1,b

(
M(2)

j,a +M(3)
j,a

)]

−∆2tTr
[
L̃1,a

(
M(2)

j,b +M(3)
j,b

)]
,

 (J.3)

where

L̃1,a(b) =
∑

y

[
∂xa(b) ln p(y|�x)

]
Πy, (J.4)

L̃2,ab =
∑

y

[∂xa ln p(y|�x)] [∂xb ln p(y|�x)] Πy, (J.5)

and M(1)
j , M(2)

j,a(b) and M(3)
j,a(b) are Hermitian operators and can be expressed by

M(1)
j = iDm

j+1H×
k (ρj), (J.6)

M(2)
j,a(b) =

j∑
i=1

Dm
j+1H×

k D j
i+1(∂xa(b)H0)

×(ρi), (J.7)
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M(3)
j,a(b) = (1 − δjm)

m∑
i=j+1

Dm
i+1(∂xa(b)H0)

×Di
j+1H×

k (ρj). (J.8)

The notation A×(·) := [A, ·] is a superoperator. δjm is the Kronecker delta function. D j′

j  is 

the propagating superoperator from the j th time point to the j′th time with the definition 

D j′

j :=
∏ j′

i=j exp(∆tEi) for j � j′. We define D j′

j =  for j > j′. ρj = D j
1ρ(0) is the quantum 

state at j th time.
For a two-parameter case �x = (x0, x1), the objective function can be chosen as Feff(T) 

according to corollary 3.1.3, and the corresponding gradient is

δFeff(T)
δVk( j)

=
I2

11 + I2
01

(I00 + I11)2

δI00

δVk( j)
+

I2
00 + I2

01

(I00 + I11)2

δI11

δVk( j)
− 2I01

I00 + I11

δI01

δVk( j)
.

 (J.9)
For the objective function

f0(T) =

(∑
a

1
Iaa(T)

)−1

, (J.10)

the gradient reads

δf0(T)
δVk( j)

=
∑

a

(
f0
Iaa

)2
δIaa

δVk( j)
. (J.11)

J.2. Gradient of QFIM

Now we calculate the gradient of the QFIM. Based on the equation

∂xaρ(T) =
1
2
(ρ(T)Lxa(T) + Lxa(T)ρ(T)), (J.12)

we can obtain

Tr
(
∂xa

δρ(T)
δVk( j)

Lxb

)
=

1
2

Tr
(
δρ(T)
δVk( j)

{Lxa(T), Lxb(T)}
)

+
1
2

Tr
(
δLxa(T)
δVk( j)

{ρ(T), Lxb(T)}
)

.
 

(J.13)

Similarly, we have

Tr
(
∂xb

δρ(T)
δVk( j)

Lxa

)
=

1
2

Tr
(
δρ(T)
δVk( j)

{Lxa(T), Lxb(T)}
)

+
1
2

Tr
(
δLxb(T)
δVk( j)

{ρ(T), Lxa(T)}
)

.
 

(J.14)

Next, from the definition of QFIM, the gradient for Fab at target time T reads [172]

δFab(T)
δVk( j)

=
1
2

Tr
(
δρ(T)
δVk( j)

{Lxa(T), Lxb(T)}
)
+

1
2

Tr
(
δLxa(T)
δVk( j)

{ρ(T), Lxb(T)}
)

+
1
2

Tr
(
δLxb(T)
δVk( j)

{ρ(T), Lxa(T)}
)

.

 

(J.15)
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Combing equations (J.13)–(J.15), one can obtain

δFab(T)
δVk( j)

= Tr
(
∂xa

δρ(T)
δVk( j)

Lxb(T)
)
+ Tr

(
∂xb

δρ(T)
δVk( j)

Lxa(T)
)

− 1
2

Tr
(
δρ(T)
δVk( j)

{Lxa(T), Lxb(T)}
)

.
 

(J.16)

Substituing the specific expressions of δρ(T)
δVk( j) given in [172], one can obtain the gradient of Fab 

as below

δFab(T)
δVk( j)

=
1
2
∆tTr

(
{Lxa(T), Lxb(T)}M

(1)
j

)

−∆2tTr
[
Lxb(T)

(
M(2)

j,a +M(3)
j,a

)]

−∆2tTr
[
Lxa(T)

(
M(2)

j,b +M(3)
j,b

)]
.

 

(J.17)

The gradient for the diagonal entry Faa reduces to the form in [172], i.e.

δFaa(T)
δVk( j)

= ∆tTr
(

L2
xa
(T)M(1)

j

)
− 2∆2tTr

[
Lxa(T)

(
M(2)

j,a +M(3)
j,a

)]
. (J.18)
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