Functions
This part is the functions of the Python-Julia package which written in Python.
Kraus¶
The parameterization of a state is \begin{align} \rho=\sum_i K_i\rho_0K_i^{\dagger}, \end{align}
where \(\rho\) is the evolved density matrix, \(K_i\) is the Kraus operator.
Parameters¶
K:
list
-- Kraus operators.dK:
list
-- Derivatives of the Kraus operators with respect to the unknown parameters to be estimated. For example, dK[0] is the derivative vector on the first parameter.rho0:
matrix
-- Initial state (density matrix).
Returns¶
Density matrix and its derivatives on the unknown parameters.
Source code in quanestimation/Parameterization/NonDynamics.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
Metrological resources¶
Calculation of spin squeezing parameter for a density matrix.
Parameters¶
rho:
matrix
-- Density matrix.basis:
string
-- The basis of the state. Options are:
"Dicke" (default) -- Dicke basis.
"Pauli" -- The original basis of each spin.output:
string
-- Types of spin squeezing can be calculated. Options are:
"KU" (default) -- Spin squeezing defined by Kitagawa and Ueda.
"WBIMH" -- Spin squeezing defined by Wineland et al.
Returns¶
\(\xi\): float
-- spin squeezing parameter
Source code in quanestimation/Resource/Resource.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
Calculation of the time to reach a given precision limit.
Parameters¶
f:
float
-- The given value of the objective function.tspan:
array
-- Time length for the evolution.func:
array
-- The function for calculating the objective function.*args:
string
-- The corresponding input parameter.**kwargs:
string
-- Keyword arguments infunc
.
Returns¶
time: float
-- Time to reach the given target.
Source code in quanestimation/Resource/Resource.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
Quantum Cramér-Rao bounds¶
Calculation of the symmetric logarithmic derivative (SLD) for a density matrix. The SLD operator \(L_a\) is determined by \begin{align} \partial_{a}\rho=\frac{1}{2}(\rho L_{a}+L_{a}\rho) \end{align}
with \(\rho\) the parameterized density matrix. The entries of SLD can be calculated as \begin{align} \langle\lambda_i|L_{a}|\lambda_j\rangle=\frac{2\langle\lambda_i| \partial_{a}\rho |\lambda_j\rangle}{\lambda_i+\lambda_j} \end{align}
for \(\lambda_i~(\lambda_j) \neq 0\). If \(\lambda_i=\lambda_j=0\), the entry of SLD is set to be zero.
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
-- Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.rep:
string
-- The basis for the SLDs. Options are:
"original" (default) -- it means the basis is the same with the input density matrix (rho).
"eigen" -- it means the basis is the same with theeigenspace of the density matrix (rho).eps:
float
-- Machine epsilon.
Returns¶
SLD(s): matrix or list
--For single parameter estimation (the length of drho is equal to one), the
output is a matrix and for multiparameter estimation (the length of drho
is more than one), it returns a list.
Source code in quanestimation/AsymptoticBound/CramerRao.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
Calculation of the right logarithmic derivative (RLD) for a density matrix. The RLD operator defined by \(\partial_{a}\rho=\rho \mathcal{R}_a\) with \(\rho\) the parameterized density matrix. \begin{align} \langle\lambda_i| \mathcal{R}_{a} |\lambda_j\rangle=\frac{1}{\lambda_i}\langle\lambda_i| \partial_a\rho |\lambda_j\rangle \end{align}
for \(\lambda_i\neq 0\) is the \(ij\)th entry of RLD.
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
-- Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.rep:
string
-- The basis for the RLD(s). Options are:
"original" (default) -- it means the basis is the same with the input density matrix (rho).
"eigen" -- it means the basis is the same with the eigenspace of the density matrix (rho).eps:
float
-- Machine epsilon.
Returns¶
RLD(s): matrix or list
-- For single parameter estimation (the length of drho is equal to one), the output
is a matrix and for multiparameter estimation (the length of drho is more than one),
it returns a list.
Source code in quanestimation/AsymptoticBound/CramerRao.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
Calculation of the left logarithmic derivative (LLD) for a density matrix \(\rho\). The LLD operator is defined by \(\partial_{a}\rho=\mathcal{R}_a^{\dagger}\rho\). The entries of LLD can be calculated as \begin{align} \langle\lambda_i| \mathcal{R}_{a}^{\dagger} |\lambda_j\rangle=\frac{1}{\lambda_j}\langle\lambda_i| \partial_a\rho |\lambda_j\rangle \end{align}
for \(\lambda_j\neq 0\).
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
-- Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.rep:
string
-- The basis for the LLD(s). Options are:
"original" (default) -- it means the basis is the same with the input density matrix (rho).
"eigen" -- it means the basis is the same with the eigenspace of the density matrix (rho).eps: float -- Machine epsilon.
Returns¶
LLD(s): matrix or list
-- For single parameter estimation (the length of drho is equal to one), the output
is a matrix and for multiparameter estimation (the length of drho is more than one),
it returns a list.
Source code in quanestimation/AsymptoticBound/CramerRao.py
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
|
Calculation of the quantum Fisher information (QFI) and quantum Fisher information matrix (QFIM) for all types. The entry of QFIM \(\mathcal{F}\) is defined as \begin{align} \mathcal{F}_{ab}=\frac{1}{2}\mathrm{Tr}(\rho{L_a, L_b}) \end{align}
with \(L_a, L_b\) are SLD operators and
and \begin{align} \mathcal{F}_{ab}=\mathrm{Tr}(\rho \mathcal{R}_a \mathcal{R}^{\dagger}_b) \end{align}
with \(\mathcal{R}_a\) the RLD or LLD operator.
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.LDtype:
string
-- Types of QFI (QFIM) can be set as the objective function. Options are:
"SLD" (default) -- QFI (QFIM) based on symmetric logarithmic derivative (SLD).
"RLD" -- QFI (QFIM) based on right logarithmic derivative (RLD).
"LLD" -- QFI (QFIM) based on left logarithmic derivative (LLD).exportLD:
bool
-- Whether or not to export the values of logarithmic derivatives. If set True then the the values of logarithmic derivatives will be exported.eps:
float
-- Machine epsilon.
Returns¶
QFI or QFIM: float or matrix
-- For single parameter estimation (the length of drho is equal to one),
the output is QFI and for multiparameter estimation (the length of drho
is more than one), it returns QFIM.
Source code in quanestimation/AsymptoticBound/CramerRao.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
|
Calculation of the quantum Fisher information (QFI) and quantum Fisher information matrix (QFIM) with Kraus operator(s) for all types.
Parameters¶
rho0:
matrix
-- Initial state (density matrix).K:
list
-- Kraus operator(s).dK:
list
-- Derivatives of the Kraus operator(s) on the unknown parameters to be estimated.LDtype:
string
-- Types of QFI (QFIM) can be set as the objective function. Options are:
"SLD" (default) -- QFI (QFIM) based on symmetric logarithmic derivative (SLD).
"RLD" -- QFI (QFIM) based on right logarithmic derivative (RLD).
"LLD" -- QFI (QFIM) based on left logarithmic derivative (LLD).exportLD:
bool
-- Whether or not to export the values of logarithmic derivatives. If set True then the the values of logarithmic derivatives will be exported.eps:
float
-- Machine epsilon.
Returns¶
QFI or QFIM: float or matrix
-- For single parameter estimation (the length of drho is equal to one),
the output is QFI and for multiparameter estimation (the length of drho
is more than one), it returns QFIM.
Source code in quanestimation/AsymptoticBound/CramerRao.py
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
|
Calculation of the classical Fisher information (CFI) and classical Fisher information matrix (CFIM) for a density matrix. The entry of CFIM \(\mathcal{I}\) is defined as \begin{align} \mathcal{I}_{ab}=\sum_y\frac{1}{p(y|\textbf{x})}[\partial_a p(y|\textbf{x})][\partial_b p(y|\textbf{x})], \end{align}
where \(p(y|\textbf{x})=\mathrm{Tr}(\rho\Pi_y)\) with \(\rho\) the parameterized density matrix.
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
-- Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.M:
list of matrices
-- A set of positive operator-valued measure (POVM). The default measurement is a set of rank-one symmetric informationally complete POVM (SIC-POVM).eps:
float
-- Machine epsilon.
Returns¶
CFI (CFIM): float or matrix
-- For single parameter estimation (the length of drho is equal to one),
the output is CFI and for multiparameter estimation (the length of drho
is more than one), it returns CFIM.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/AsymptoticBound/CramerRao.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
Calculation of the classical Fisher information (CFI) and classical Fisher information matrix (CFIM) for classical scenarios. The entry of FIM \(I\) is defined as \begin{align} I_{ab}=\sum_{y}\frac{1}{p_y}[\partial_a p_y][\partial_b p_y], \end{align}
where \(\{p_y\}\) is a set of the discrete probability distribution.
Parameters¶
p:
array
-- The probability distribution.dp:
list
-- Derivatives of the probability distribution on the unknown parameters to be estimated. For example, dp[0] is the derivative vector on the first parameter.eps:
float
-- Machine epsilon.
Returns¶
CFI (CFIM): float or matrix
-- For single parameter estimation (the length of drho is equal to one),
the output is CFI and for multiparameter estimation (the length of drho
is more than one), it returns CFIM.
Source code in quanestimation/AsymptoticBound/CramerRao.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
Calculation of the classical Fisher information (CFI) based on the experiment data.
Parameters¶
y1:
array
-- Experimental data obtained at the truth value (x).y2:
list
-- Experimental data obtained at x+dx.dx:
float
-- A known small drift of the parameter.ftype:
string
-- The distribution the data follows. Options are:
"norm" (default) -- normal distribution.
"gamma" -- gamma distribution. "rayleigh" -- rayleigh distribution. "poisson" -- poisson distribution.
Returns¶
CFI: float or matrix
Source code in quanestimation/AsymptoticBound/CramerRao.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
Calculation of the SLD based quantum Fisher information (QFI) and quantum
Fisher information matrix (QFIM) in Bloch representation.
Parameters¶
r:
list
-- Parameterized Bloch vector.dr:
list
-- Derivatives of the Bloch vector on the unknown parameters to be estimated. For example, dr[0] is the derivative vector on the first parameter.eps:
float
-- Machine epsilon.
Returns¶
QFI or QFIM in Bloch representation: float or matrix
-- For single parameter estimation (the length of drho is equal to one),
the output is QFI and for multiparameter estimation (the length of drho
is more than one), it returns QFIM.
Source code in quanestimation/AsymptoticBound/CramerRao.py
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
|
Calculation of the SLD based quantum Fisher information (QFI) and quantum Fisher information matrix (QFIM) with gaussian states.
Parameters¶
R:
array
-- First-order moment.dR:
list
-- Derivatives of the first-order moment on the unknown parameters to be estimated. For example, dR[0] is the derivative vector on the first parameter.D:
matrix
-- Second-order moment.dD:
list
-- Derivatives of the second-order moment on the unknown parameters to be estimated. For example, dD[0] is the derivative vector on the first parameter.eps:
float
-- Machine epsilon.
Returns¶
QFI or QFIM with gaussian states: float or matrix
-- For single parameter estimation (the length of drho is equal to one),
the output is QFI and for multiparameter estimation (the length of drho
is more than one), it returns QFIM.
Source code in quanestimation/AsymptoticBound/CramerRao.py
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
|
Holevo Cramér-Rao bound¶
Calculation of the Holevo Cramer-Rao bound (HCRB) via the semidefinite program (SDP).
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
-- Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.W:
matrix
-- Weight matrix.eps:
float
-- Machine epsilon.
Returns¶
HCRB: float
-- The value of Holevo Cramer-Rao bound.
Source code in quanestimation/AsymptoticBound/AnalogCramerRao.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
Nagaoka-Hayashi bound¶
Calculation of the Nagaoka-Hayashi bound (NHB) via the semidefinite program (SDP).
Parameters¶
rho:
matrix
-- Density matrix.drho:
list
-- Derivatives of the density matrix on the unknown parameters to be estimated. For example, drho[0] is the derivative vector on the first parameter.W:
matrix
-- Weight matrix.
Returns¶
NHB: float
-- The value of Nagaoka-Hayashi bound.
Source code in quanestimation/AsymptoticBound/AnalogCramerRao.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
Bayesian Cramér-Rao bounds¶
Calculation of the Bayesian classical Fisher information (BCFI) and the Bayesian classical Fisher information matrix (BCFIM) of the form \begin{align} \mathcal{I}_{\mathrm{Bayes}}=\int p(\textbf{x})\mathcal{I}\mathrm{d}\textbf{x} \end{align}
with \(\mathcal{I}\) the CFIM and \(p(\textbf{x})\) the prior distribution.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.drho:
multidimensional list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.M:
list of matrices
-- A set of positive operator-valued measure (POVM). The default measurement is a set of rank-one symmetric informationally complete POVM (SIC-POVM).eps:
float
-- Machine epsilon.
Returns¶
BCFI or BCFIM: float or matrix
-- For single parameter estimation (the length of x is equal to one), the output
is BCFI and for multiparameter estimation (the length of x is more than one),
it returns BCFIM.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
Calculation of the Bayesian quantum Fisher information (BQFI) and the Bayesian quantum Fisher information matrix (BQFIM) of the form \begin{align} \mathcal{F}_{\mathrm{Bayes}}=\int p(\textbf{x})\mathcal{F}\mathrm{d}\textbf{x} \end{align}
with \(\mathcal{F}\) the QFIM of all types and \(p(\textbf{x})\) the prior distribution.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.drho:
multidimensional list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.LDtype:
string
-- Types of QFI (QFIM) can be set as the objective function. Options are:
"SLD" (default) -- QFI (QFIM) based on symmetric logarithmic derivative (SLD).
"RLD" -- QFI (QFIM) based on right logarithmic derivative (RLD).
"LLD" -- QFI (QFIM) based on left logarithmic derivative (LLD).eps:
float
-- Machine epsilon.
Returns¶
BQFI or BQFIM: float or matrix
-- For single parameter estimation (the length of x is equal to one), the output
is BQFI and for multiparameter estimation (the length of x is more than one),
it returns BQFIM.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
Calculation of the Bayesian Cramer-Rao bound (BCRB). The covariance matrix with a prior distribution \(p(\textbf{x})\) is defined as \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})=\int p(\textbf{x})\sum_y\mathrm{Tr} (\rho\Pi_y)(\hat{\textbf{x}}-\textbf{x})(\hat{\textbf{x}}-\textbf{x})^{\mathrm{T}} \mathrm{d}\textbf{x} \end{align}
where \(\textbf{x}=(x_0,x_1,\dots)^{\mathrm{T}}\) are the unknown parameters to be estimated and the integral \(\int\mathrm{d}\textbf{x}:=\iiint\mathrm{d}x_0\mathrm{d}x_1\cdots\). \(\{\Pi_y\}\) is a set of positive operator-valued measure (POVM) and \(\rho\) represents the parameterized density matrix.
This function calculates three types BCRB. The first one is \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})\geq \int p(\textbf{x})\left(B\mathcal{I}^{-1}B +\textbf{b}\textbf{b}^{\mathrm{T}}\right)\mathrm{d}\textbf{x}, \end{align}
where \(\textbf{b}\) and \(\textbf{b}'\) are the vectors of biase and its derivatives on parameters. \(B\) is a diagonal matrix with the \(i\)th entry \(B_{ii}=1+[\textbf{b}']_{i}\) and \(\mathcal{I}\) is the CFIM.
The second one is \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})\geq \mathcal{B}\,\mathcal{I}_{\mathrm{Bayes}}^{-1}\, \mathcal{B}+\int p(\textbf{x})\textbf{b}\textbf{b}^{\mathrm{T}}\mathrm{d}\textbf{x}, \end{align}
where \(\mathcal{B}=\int p(\textbf{x})B\mathrm{d}\textbf{x}\) is the average of \(B\) and \(\mathcal{I}_{\mathrm{Bayes}}=\int p(\textbf{x})\mathcal{I}\mathrm{d}\textbf{x}\) is the average CFIM.
The third one is \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})\geq \int p(\textbf{x}) \mathcal{G}\left(\mathcal{I}_p+\mathcal{I}\right)^{-1}\mathcal{G}^{\mathrm{T}}\mathrm{d}\textbf{x} \end{align}
with \([\mathcal{I}_{p}]_{ab}:=[\partial_a \ln p(\textbf{x})][\partial_b \ln p(\textbf{x})]\) and \(\mathcal{G}_{ab}:=[\partial_b\ln p(\textbf{x})][\textbf{b}]_a+B_{aa}\delta_{ab}\).
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.drho:
multidimensional list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.M:
list of matrices
-- A set of positive operator-valued measure (POVM). The default measurement is a set of rank-one symmetric informationally complete POVM (SIC-POVM).b:
list
-- Vector of biases of the form \(\textbf{b}=(b(x_0),b(x_1),\dots)^{\mathrm{T}}\).db:
list
-- Derivatives of b with respect to the unknown parameters to be estimated, It should be expressed as \(\textbf{b}'=(\partial_0 b(x_0),\partial_1 b(x_1),\dots)^{\mathrm{T}}\).btype:
int (1, 2, 3)
-- Types of the BCRB. Options are:
1 (default) -- It means to calculate the first type of the BCRB.
2 -- It means to calculate the second type of the BCRB. 3 -- It means to calculate the third type of the BCRB.eps:
float
-- Machine epsilon.
Returns¶
BCRB: float or matrix
-- For single parameter estimation (the length of x is equal to one), the
output is a float and for multiparameter estimation (the length of x is
more than one), it returns a matrix.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
|
Calculation of the Bayesian quantum Cramer-Rao bound (BQCRB). The covariance matrix with a prior distribution \(p(\textbf{x})\) is defined as \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})=\int p(\textbf{x})\sum_y\mathrm{Tr} (\rho\Pi_y)(\hat{\textbf{x}}-\textbf{x})(\hat{\textbf{x}}-\textbf{x})^{\mathrm{T}} \mathrm{d}\textbf{x} \end{align}
where \(\textbf{x}=(x_0,x_1,\dots)^{\mathrm{T}}\) are the unknown parameters to be estimated and the integral \(\int\mathrm{d}\textbf{x}:=\iiint\mathrm{d}x_0\mathrm{d}x_1\cdots\). \(\{\Pi_y\}\) is a set of positive operator-valued measure (POVM) and \(\rho\) represent the parameterized density matrix.
This function calculates three types of the BQCRB. The first one is \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})\geq\int p(\textbf{x})\left(B\mathcal{F}^{-1}B +\textbf{b}\textbf{b}^{\mathrm{T}}\right)\mathrm{d}\textbf{x}, \end{align}
where \(\textbf{b}\) and \(\textbf{b}'\) are the vectors of biase and its derivatives on parameters. \(B\) is a diagonal matrix with the \(i\)th entry \(B_{ii}=1+[\textbf{b}']_{i}\) and \(\mathcal{F}\) is the QFIM for all types.
The second one is \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})\geq \mathcal{B}\,\mathcal{F}_{\mathrm{Bayes}}^{-1}\, \mathcal{B}+\int p(\textbf{x})\textbf{b}\textbf{b}^{\mathrm{T}}\mathrm{d}\textbf{x}, \end{align}
where \(\mathcal{B}=\int p(\textbf{x})B\mathrm{d}\textbf{x}\) is the average of \(B\) and \(\mathcal{F}_{\mathrm{Bayes}}=\int p(\textbf{x})\mathcal{F}\mathrm{d}\textbf{x}\) is the average QFIM.
The third one is \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})\geq \int p(\textbf{x}) \mathcal{G}\left(\mathcal{I}_p+\mathcal{F}\right)^{-1}\mathcal{G}^{\mathrm{T}}\mathrm{d}\textbf{x} \end{align}
with \([\mathcal{I}_{p}]_{ab}:=[\partial_a \ln p(\textbf{x})][\partial_b \ln p(\textbf{x})]\) and \(\mathcal{G}_{ab}:=[\partial_b\ln p(\textbf{x})][\textbf{b}]_a+B_{aa}\delta_{ab}\).
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.drho:
multidimensional list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.b:
list
-- Vector of biases of the form \(\textbf{b}=(b(x_0),b(x_1),\dots)^{\mathrm{T}}\).db:
list
-- Derivatives of b with respect to the unknown parameters to be estimated, It should be expressed as \(\textbf{b}'=(\partial_0 b(x_0),\partial_1 b(x_1),\dots)^{\mathrm{T}}\).btype:
int (1, 2, 3)
-- Types of the BQCRB. Options are:
1 (default) -- It means to calculate the first type of the BQCRB.
2 -- It means to calculate the second type of the BQCRB. 3 -- It means to calculate the third type of the BCRB.LDtype:
string
-- Types of QFI (QFIM) can be set as the objective function. Options are:
"SLD" (default) -- QFI (QFIM) based on symmetric logarithmic derivative (SLD).
"RLD" -- QFI (QFIM) based on right logarithmic derivative (RLD).
"LLD" -- QFI (QFIM) based on left logarithmic derivative (LLD).eps:
float
-- Machine epsilon.
Returns¶
BQCRB: float or matrix
-- For single parameter estimation (the length of x is equal to one), the
output is a float and for multiparameter estimation (the length of x is
more than one), it returns a matrix.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
|
Calculation of the optimal biased bound based on the first type of the BQCRB in the case of single parameter estimation. The expression of OBB with a prior distribution \(p(x)\) is \begin{align} \mathrm{var}(\hat{x},{\Pi_y})\geq\int p(x)\left(\frac{(1+b')^2}{F} +b^2\right)\mathrm{d}x, \end{align}
where \(b\) and \(b'\) are the vector of biase and its derivative on \(x\). \(F\) is the QFI for all types.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
array
-- The prior distribution.dp:
list
-- Derivatives of the prior distribution with respect to the unknown parameters to to estimated. For example, dp[0] is the derivative vector with respect to the first parameter.rho:
list
-- Parameterized density matrix.drho:
list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.drho:
list
-- Second order Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.LDtype:
string
-- Types of QFI (QFIM) can be set as the objective function. Options are:
"SLD" (default) -- QFI (QFIM) based on symmetric logarithmic derivative (SLD).
"RLD" -- QFI (QFIM) based on right logarithmic derivative (RLD).
"LLD" -- QFI (QFIM) based on left logarithmic derivative (LLD).eps:
float
-- Machine epsilon.
Returns¶
QVTB: float or matrix
-- For single parameter estimation (the length of x is equal to one), the
output is a float and for multiparameter estimation (the length of x is
more than one), it returns a matrix.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 |
|
Calculation of the Bayesian version of Cramer-Rao bound introduced by Van Trees (VTB). The covariance matrix with a prior distribution \(p(\textbf{x})\) is defined as \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})=\int p(\textbf{x})\sum_y\mathrm{Tr} (\rho\Pi_y)(\hat{\textbf{x}}-\textbf{x})(\hat{\textbf{x}}-\textbf{x})^{\mathrm{T}} \mathrm{d}\textbf{x} \end{align}
where \(\textbf{x}=(x_0,x_1,\dots)^{\mathrm{T}}\) are the unknown parameters to be estimated and the integral \(\int\mathrm{d}\textbf{x}:=\iiint\mathrm{d}x_0\mathrm{d}x_1\cdots\). \(\{\Pi_y\}\) is a set of positive operator-valued measure (POVM) and \(\rho\) represent the parameterized density matrix.
where \(\mathcal{I}_{\mathrm{prior}}=\int p(\textbf{x})\mathcal{I}_{p}\mathrm{d}\textbf{x}\) is the CFIM for \(p(\textbf{x})\) and \(\mathcal{I}_{\mathrm{Bayes}}=\int p(\textbf{x})\mathcal{I}\mathrm{d}\textbf{x}\) is the average CFIM.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.dp:
list
-- Derivatives of the prior distribution with respect to the unknown parameters to be estimated. For example, dp[0] is the derivative vector with respect to the first parameter.rho:
multidimensional list
-- Parameterized density matrix.drho:
multidimensional list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.M:
list of matrices
-- A set of positive operator-valued measure (POVM). The default measurement is a set of rank-one symmetric informationally complete POVM (SIC-POVM).eps:
float
-- Machine epsilon.
Returns¶
VTB: float or matrix
-- For single parameter estimation (the length of x is equal to one), the
output is a float and for multiparameter estimation (the length of x is
more than one), it returns a matrix.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
|
Calculation of the Bayesian version of quantum Cramer-Rao bound introduced by Van Trees (QVTB). The covariance matrix with a prior distribution p(\textbf{x}) is defined as \begin{align} \mathrm{cov}(\hat{\textbf{x}},{\Pi_y})=\int p(\textbf{x})\sum_y\mathrm{Tr} (\rho\Pi_y)(\hat{\textbf{x}}-\textbf{x})(\hat{\textbf{x}}-\textbf{x})^{\mathrm{T}} \mathrm{d}\textbf{x} \end{align}
where \(\textbf{x}=(x_0,x_1,\dots)^{\mathrm{T}}\) are the unknown parameters to be estimated and the integral \(\int\mathrm{d}\textbf{x}:=\iiint\mathrm{d}x_0\mathrm{d}x_1\cdots\). \(\{\Pi_y\}\) is a set of positive operator-valued measure (POVM) and \(\rho\) represent the parameterized density matrix.
where \(\mathcal{I}_{\mathrm{prior}}=\int p(\textbf{x})\mathcal{I}_{p}\mathrm{d}\textbf{x}\) is the CFIM for \(p(\textbf{x})\) and \(\mathcal{F}_{\mathrm{Bayes}}=\int p(\textbf{x})\mathcal{F} \mathrm{d}\textbf{x}\) is the average QFIM of all types.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p: multidimensional array -- The prior distribution.
dp:
list
-- Derivatives of the prior distribution with respect to the unknown parameters to to estimated. For example, dp[0] is the derivative vector with respect to the first parameter.rho:
multidimensional list
-- Parameterized density matrix.drho:
multidimensional list
-- Derivatives of the parameterized density matrix (rho) with respect to the unknown parameters to be estimated.LDtype:
string
-- Types of QFI (QFIM) can be set as the objective function. Options are:
"SLD" (default) -- QFI (QFIM) based on symmetric logarithmic derivative (SLD).
"RLD" -- QFI (QFIM) based on right logarithmic derivative (RLD).
"LLD" -- QFI (QFIM) based on left logarithmic derivative (LLD).eps:
float
-- Machine epsilon.
Returns¶
QVTB: float or matrix
-- For single parameter estimation (the length of x is equal to one), the
output is a float and for multiparameter estimation (the length of x is
more than one), it returns a matrix.
Source code in quanestimation/BayesianBound/BayesCramerRao.py
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 |
|
Quantum Ziv-Zakai bound¶
Calculation of the quantum Ziv-Zakai bound (QZZB). The expression of QZZB with a prior distribution p(x) in a finite regime \([\alpha,\beta]\) is
where \(||\cdot||\) represents the trace norm and \(\mathcal{V}\) is the "valley-filling" operator satisfying \(\mathcal{V}f(\tau)=\max_{h\geq 0}f(\tau+h)\). \(\rho(x)\) is the parameterized density matrix.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.eps:
float
-- Machine epsilon.
Returns¶
QZZB: float
-- Quantum Ziv-Zakai bound (QZZB).
Source code in quanestimation/BayesianBound/ZivZakai.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
Bayesian estimation¶
Bayesian estimation. The prior distribution is updated via the posterior
distribution obtained by the Bayes’ rule and the estimated value of parameters
are updated via the expectation value of the distribution or maximum a
posteriori probability (MAP).
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.y:
array
-- The experimental results obtained in practice.M:
list of matrices
-- A set of positive operator-valued measure (POVM). The default measurement is a set of rank-one symmetric informationally complete POVM (SIC-POVM).estimator:
string
-- Estimators for the bayesian estimation. Options are:
"mean" -- The expectation value of the distribution.
"MAP" -- Maximum a posteriori probability.savefile:
bool
-- Whether or not to save all the posterior distributions.
If setTrue
then two files "pout.npy" and "xout.npy" will be generated including the posterior distributions and the estimated values in the iterations. If setFalse
the posterior distribution in the final iteration and the estimated values in all iterations will be saved in "pout.npy" and "xout.npy".
Returns¶
pout and xout: array and float
-- The posterior distribution and the estimated values in the final iteration.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/BayesianBound/BayesEstimation.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
Bayesian estimation. The estimated value of parameters obtained via the maximum likelihood estimation (MLE).
Parameters¶
x:
list
-- The regimes of the parameters for the integral.rho:
multidimensional list
-- Parameterized density matrix.y:
array
-- The experimental results obtained in practice.M:
list of matrices
-- A set of positive operator-valued measure (POVM). The default measurement is a set of rank-one symmetric informationally complete POVM (SIC-POVM).savefile:
bool
-- Whether or not to save all the likelihood functions.
If setTrue
then two files "Lout.npy" and "xout.npy" will be generated including the likelihood functions and the estimated values in the iterations. If setFalse
the likelihood function in the final iteration and the estimated values in all iterations will be saved in "Lout.npy" and "xout.npy".
Returns¶
Lout and xout: array and float
-- The likelihood function and the estimated values in the final iteration.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/BayesianBound/BayesEstimation.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
Calculation of the average Bayesian cost with a quadratic cost function.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.xest:
list
-- The estimators.rho:
multidimensional list
-- Parameterized density matrix.M:
array
-- A set of POVM.W:
array
-- Weight matrix.eps:
float
-- Machine epsilon.
Returns¶
The average Bayesian cost: float
-- The average Bayesian cost.
Source code in quanestimation/BayesianBound/BayesEstimation.py
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
|
Calculation of the Bayesian cost bound with a quadratic cost function.
Parameters¶
x:
list
-- The regimes of the parameters for the integral.p:
multidimensional array
-- The prior distribution.rho:
multidimensional list
-- Parameterized density matrix.W:
array
-- Weight matrix.eps:
float
-- Machine epsilon.
Returns¶
BCB: float
-- The value of the minimum Bayesian cost.
Source code in quanestimation/BayesianBound/BayesEstimation.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
|
Common¶
Generation of the input variables H, dH (or K, dK).
Parameters¶
x:
list
-- The regimes of the parameters for the integral.func:
list
-- Function defined by the users which returns H or K.dfunc:
list
-- Function defined by the users which returns dH or dK.channel:
string
-- Seeting the output of this function. Options are:
"dynamics" (default) -- The output of this function is H and dH.
"Kraus" (default) -- The output of this function is K and dHK.
Returns¶
H, dH (or K, dK).
Source code in quanestimation/Common/Common.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
Generation of a set of rank-one symmetric informationally complete positive operator-valued measure (SIC-POVM).
Parameters¶
dim:
int
-- The dimension of the system.
Returns¶
A set of SCI-POVM.
Note: SIC-POVM is calculated by the Weyl-Heisenberg covariant SIC-POVM fiducial state which can be downloaded from here.
Source code in quanestimation/Common/Common.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
Generation of the SU(\(N\)) generators with \(N\) the dimension of the system.
Parameters¶
n:
int
-- The dimension of the system.
Returns¶
SU(\(N\)) generators.
Source code in quanestimation/Common/Common.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|